
ON THE COVER
7 OLE Automation — Cary Jensen, Ph.D.
Using Delphi and Microsoft Word for Windows, Dr Jensen explains how to
use OLE Automation to have one application control another. He provides
all the information needed to turn any Delphi 2 application into an
automation server.

FEATURES
12 Informant Spotlight — Ray Lischner
Mr Lischner explains the nuances of building DLLs in Delphi 1
and 2. The discussion includes a DLL refresher course, exporting a
class from a DLL, importing a class into an application, and using
objects that cross module boundaries.

19 Visual Programming — Keith Wood
Mr Wood helps you become a pro at creating experts; step-by-
step, he teaches you how to use the TExpert class to build a
customizable expert for creating screen savers — then there’s the
screen saver itself. It’s two articles in one.

26 OP Tech — Robert Vivrette
Need to know an object’s container? Or which object is
responsible for creating and destroying another? Mr Vivrette
demonstrates how to find out with a sample Delphi 2 application
using Object Pascal’s Controls array and Components array.

29 Delphi C/S — Bill Todd
Are you ready to commit? Before jumping into Delphi/InterBase
client/server computing, you must understand the issues affecting
concurrent access to data. Mr Todd explains the InterBase
difference: versioning.

35 Delphi at Work — Douglas Horn
You may not have noticed it; its very ubiquity makes it invisible.
Nevertheless, the humble Sender parameter can make many Object
Pascal programming tasks easier. Mr Horn explains how to put the
neglected parameter to work.

39 Inside OP — Dan Miser
Using Delphi’s data-aware components as a model, Mr Miser has created
TINISource, an INI-aware component that takes the drudgery out of inter-
acting with Windows .INI files.

REVIEWS
42 With Class — Product Review by James Callan

46 Delphi 2 Unleashed — Book Review by Cary Jensen, Ph.D.
46 The New Delphi 2 Programming EXplorer

Book Review by Tim Feldman

DEPARTMENTS
2 Delphi Tools
5 Newsline
48 File | New by Richard Wagner

1 October 1996 Delphi Informant

Cover Art By: Tom McKeith

October 1996, Volume 2, Number 10

OLE Automation

Controlling One Application with Another

2 October 1996 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Delphi Programming for
Dummies 2nd Edition

Neil J. Rubenking
IDG Books

ISBN: 1-56884-621-5
Price: US$24.99 (418 pages)
Phone: (800) 762-2974
NuMega Technologies Supports Delphi 2 with BoundsChecker 4.0

NuMega Technologies,

Inc., of Nashua, NH has
released BoundsChecker
4.0, with enhancements to
BoundsChecker’s error
detection solutions.

Version 4.0 supports
Delphi 2 and ApiGen, a
utility for the validation of
user-extensible API calls.

The newest version of
BoundsChecker supports
ActiveX, and Smart
Debugging (background
error detection).

BoundsChecker is the
only error detection tool
that can evaluate Internet
APIs, interfaces, and con-
trols, including URLMON
and HLINK, while validat-
ing hundreds of DLL func-
tions. This includes the
Internet’s WinSock API.

BoundsChecker’s new
OLECheck features detect
OLE interface leaks and
invalid parameters, and
return codes for over 70
OLE interfaces.

BoundsChecker can also
identify more than 85
errors in eight categories by
type, stack trace, and exact
location in source code.
Price: BoundsChecker Standard
Edition, US$299.
Contact: NuMega Technologies, Inc.,
9 Townsend West, Nashua, NH 03063
Phone: (800) 468-6342 or
(603) 889-2386
Fax: (603) 889-1135 or
(603) 889-2386
E-Mail: Internet: info@numega.com
Web Site: http://www.numega.com
Mercury Interactive and Borland Announce Client/Server Testing Solution

Mercury Interactive Corp.

of Sunnyvale, CA, and
Borland have announced a
new client/server testing
solution that integrates
WinRunner 4.0 and
LoadRunner 4.0 testing
tools with Delphi
Client/Server Suite 2.
The new Delphi extensions

built into WinRunner 4.0, a
GUI testing tool, and
LoadRunner 4.0, a client/serv-
er and Web Load Testing tool,
will integrate a Visual Testing
environment that organizes
automated testing facilities
and makes them available to
Delphi testers. The Delphi
extensions also include auto-
mated record, replay, and veri-
fication for Delphi GUI
object testing.
The integration of Delphi

and WinRunner 4.0 includes:
Visual Testing, enabling users
to visually record and replay
test scenarios using a point-
and-click method of selecting
Delphi objects; and
Verification Testing, ensuring
Delphi testers know when the
application is performing as
expected.

It also has SMARTest (Script
Mapping for Adaptable and
Reusable Test technology) to
handle application changes
automatically. SMARTest
maintains Delphi object spe-
cific data independently of
individual scripts. Its architec-
ture separates variable object
data from scripts, ensuring
the same scripts can be reused
even as the application
changes during development.
The integration of Delphi

and LoadRunner 4.0 includes:
Client Load Testing, simulat-
ing multiple Delphi client
users across the network;
Server Load Testing, providing
a way to stress a server’s capac-
ity by simulating the activity
generated by multiple Delphi
applications on a single PC;
and Web Load Testing, for
stressing a Web server capacity
by recreating HTTP traffic
through multi-tasking Web
virtual users.

Delphi extensions for
WinRunner and LoadRunner
will be available this month
for Windows 95 and
Windows NT. Mercury
Interactive will offer the
Delphi extensions to existing
customers free of charge.

Price: LoadRunner 4.0 Standard edi-
tion (Windows 3.1), US$14,990;
Professional edition (Windows 3.1,
Windows 95, and NT), starts at
US$40,000; Professional edition
(UNIX), starts at US$50,000.
WinRunner 4.0 Standard edition
(Windows 3.1),US$2,850; Professional
edition (Windows 3.1, Windows 95,
and NT), US$3,995.
Contact: Mercury Interactive, 470
Potrero Ave., Sunnyvale, CA 94086
Phone: (800) 759-3302 or
(408) 523-9900
Fax: (408) 523-9911
Web Site: http://www.merc-int.com

3 October 1996 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

teach yourself... Delphi 2

Devra Hall
MIS Press

ISBN: 1-55828-457-5
Price: US$29.95
(322 pages, Disk)
Phone: (800) 488-5233
SkyLine Tools Introduces ImageLib@theEdge for Delphi

In North Hollywood, CA,

SkyLine Tools announced
the debut of ImageLib-
@theEdge. It sells as a stand-
alone component for manip-
ulating images in Delphi, or
as an add-on to current
ImageLib packages. These
include ImageLib Portfolio
3.1, ImageLib ’95, and
ImageLib Combo.

theEdge produces imaging
effects including mosaic,
hole punch, page curl,
whirlpool, and wave.

Additionally, theEdge fea-
tures color and reduction
properties; gamma correc-
tion; contrast, brightening,
sharpening features; and
can scale, crop, and rotate
images by degree. It also
features five new transitions
(wipes and fades) that pro-
vide effects for presenta-
tions.

A free trial version is avail-
able from Skyline’s Web site.

Price: theEdge stand-alone version
US$129; ImageLibCombo@theEdge
US$299.
Contact: SkyLine Tools,
11956 Riverside Dr. Suite 107,
North Hollywood, CA 91607
Phone: (818) 766-4561
Fax: (818) 766-9027
E-Mail: Internet: 72130.353@-
compuserve.com
Web Site: http://www.imageLib.com
Eschalon Development Releases Power Libraries for Delphi 2

Eschalon Development

Inc. of Coquitlam, BC,
Canada has released
Eschalon Power Libraries.
Developed specifically for
Delphi 2, and compatible
with Windows 95 and
Windows NT, Eschalon
Power Libraries provides
over 450 functions for
Delphi 2 applications.

Included in the product are
functions for string manipu-
lation, string parsing and
tokens, file and disk access,
date and time, hashing/-
checksums/CRC, MD5 mes-
sage digest, sorting, search-
ing, timing, and debugging.
Eschalon Power Libraries

feature streams for memory
mapped files, classes for con-
tainers (integer, string,
indexed, variables, etc.), sec-
tion and log files, and reg-
istry access. They also have
asynchronous/synchronous
execution of programs, as
well as a “sendkeys” feature,
and allow developers to use
the custom structured file
class for unique file formats.

Price: US$149.95
Contact: Eschalon Development Inc.,
24-2979 Panorama Drive, Coquitlam,
BC, Canada V3E 2W8
Phone: (604) 945-3198
Fax: (604) 945-7602
E-Mail: Internet: info@eschalon.com
Web Site: http://www.eschalon.com
Open Window Releases OWShare
“Open Window Releases OWShare”
continued on page 4
Open Window of
Colorado Springs, CO has
released OWShare, a source
code package that provides
screens and support code to
turn program functionality
into a shareware product.

OWShare is available in
Delphi and Visual Basic ver-
sions that support ASP-com-
pliant time and usage limiting,
branding, escalating reminder
screens, site licenses, evalua-
tion period extensions, and
other shareware features.

With OWShare, a developer
can initialize the global vari-
ables appropriate for a pro-
ject, edit the supplied forms
with Delphi’s built-in visual
editors, and then “drop in”
his or her program.

OWShare coincides with a
revision of the requirements
for shareware programs
released by members of the
Association of Shareware
Professionals.

A demonstration program
is available on the WINU-
TIL CompuServe Forum
(OWSHR.ZIP), and

4 October 1996 Delphi Informant

Objective Software
Technology of Canberra,
ACT Australia has
announced Delphi 2
updates for their ABC for
Delphi and TRANSFORM
products. Both products
are now available for
Delphi 1 and 2.

ABC for Delphi is a library
of 30 visual components
including exception handling,
user interface, and data com-
ponents.

TRANSFORM is a Delphi
component that allows gen-
eration of aggregate compo-
nents from Delphi forms. It’s
suited for prototyping and
iterative development of
complex components. Patch
updates for current users are
available on the Informant
CompuServe forum (GO
ICGFORUM).

Price: ABC, US$89 or US$179 (with
source). TRANSFORM, US$125.
Contact: In the US: ZAC Catalog,
1090 Kapp Drive, Clearwater, FL 34625
Phone: (800) 463-3574 or
(813) 298-1181
Fax: (813) 461-5808
E-mail: Internet: sales@zac-
catalog.com
Web site: http://www.zaccatalog.com

Contact: Outside the US: Objective
Software Technology Pty Ltd., PO Box E138
Kingston, ACT 2604 Australia
Phone: (+61) 6-273-2100
Fax: (+61) 6-273-2190
E-mail: Internet: 100035.2441@-
compuserve.com
Web Site: http://ourworld.com-
puserve.com/homepages/objsoft or
http://www.obsof.com

Objective Software Supports Delphi 2 with Product UpdatesDelphi
T O O L S

New Products
and Solutions

Sax Software, of Eugene,
OR is now shipping the lat-
est version of Sax Basic
Engine Pro 3.0. An ActiveX
control, Sax Basic Engine
Pro integrates with Delphi,
Visual C++, and Visual Basic
applications, and supports
events, classes, and multiple
modules.

Sax Basic Engine Pro
offers syntax highlighting,
and includes an integrated
editor and debugger that
can call a stack, set a vari-
able watch, or single-step
through code. It also allows
users to manipulate events
by treating everything as an
object. Whenever an object
receives an action, an event
is fired.
Sax Basic Engine Pro also

works with multiple mod-
ules in macro code. Users
can create complex macros
and customize common dia-
log boxes.

Price: US$495; requires no royalties
or run-time fees, and ships with a 30-
day money-back guarantee.
Contact: Sax Software, 950 Patterson
St., Eugene, OR 97401

Phone: (800) 645-3729 or
(541) 344-2235
Fax: (541) 344-2459
E-Mail: Internet: info@saxsoft.com
Web Site: http://www.saxsoft.com

Sax Ships Basic
Engine Pro

CD Cleaner
303 Products, Inc. of Palo

Cedro, CA is shipping 303
Sonic Blast. This anti-static

agent repels dust, fingerprints,
and smudging on CDs. Discs
treated with this biodegrad-
able formula are protected

for up to one year.
Each Kit contains a spray
bottle and an applicator

pad, and treats
approximately 300 CDs.

Price: US$12.95
Contact: 303 Products, Inc.,

PO Box 966,
Palo Cedro, CA 96073

Phone: (916) 549-5617
Fax: (916) 549-5577

Web Site: http://www.303-products.com
Open Window Releases OWShare (cont.)

America Online in the
Development Forum
(OWSHR_10.ZIP).

In addition to the online
Help, support is available via
CompuServe, America
Online, Internet, or US
Mail. OWShare requires
Windows 3.1 or Windows
95, and Delphi.
Price: US$59.95
Contact: Open Window, PO Box 49746,
Colorado Springs, CO 80949-9746
Phone: (800) 531-0403 or
(719) 531-0403
Fax: (719) 531-0403
E-Mail: Internet: 75236.3243-
@compuserve.com
CIS Forum: GO WINUTIL
Web Site: http://www.openwindow.com

5 October 1996 Delphi Informant

News
L I N E

Oc tobe r 1996

ROI Systems Chooses
Delphi

ROI Systems, Inc., an
Enterprise Resource Planning

(ERP) software supplier,
has selected Delphi to create

the interface for its next
generation of integrated

business systems.
ROI Systems is changing its

GUI presentation, instead of
updating their ASCII screens
with screen scraper products
that give a GUI appearance,
but still require multiple steps
to move from one function
to another to complete a

transaction. ROI’s new client
interface will in some cases
combine 15 separate func-

tions on one screen.
For more information, call:
(800) 544-7849, e-mail:

sales@roisysinc.com, or visit
ROI’s Web site at

http://www.roisysinc.com.
EDS Chooses Delphi to Develop Case Tracking System

Scotts Valley, CA —

Electronic Data Systems
Corp. (EDS) has selected
Delphi to develop a
client/server-based Case
Activity Tracking System
(CATS) for the National
Labor Relations Board
(NLRB). The NLRB will use
CATS to manage over 40,000
new legal cases annually, as
well as to report statistics.
The NLRB, under the

Defense Enterprise
Integration Services contract,
selected EDS to help convert
a mainframe case tracking
system to a client/server
architecture, and develop a
new prototype system for
legal case tracking.

EDS used Delphi and the
Borland RAD Pack to create
preliminary CATS screens
currently being demonstrated
to NLRB staffers around the
country for design review
and user input. The CATS
“VCL Contest Winners Announced”
continued on page 6
system is scheduled to begin
full deployment in 1997.

For more information visit
EDS’ Web site at
http://www.eds.com.
Borland Ships Trial,
Learning, and
Low-Price Editions
of Delphi

Scotts Valley, CA — Borland
has released three new ver-
sions of Delphi, including a
trial edition that users can
download free from Borland
Online; a “Learn to Program
with Delphi” package for stu-
dents and beginning pro-
grammers; and an easy-to-use,
low-price version of Delphi 2
for developers to evaluate.
The “Learn to Program with

Delphi” package includes the
16-bit Delphi 1 software,
Teach Yourself Delphi in 21
Days, Computer-Based
Training (an online curricu-
lum), and new sample appli-
cations with source code.
The new special version of

Delphi 2 has been re-designed
with features making it more
accessible to new developers.
In addition, Borland has
included new functionality to
show how Delphi can be an
add-on tool for Visual Basic
and C++ developers. This ver-
sion of Delphi 2 includes
Teach Yourself Delphi 2 in 21
Days, an online Visual Basic-
to-Delphi command refer-
ence, and an online Delphi
reference for C++ developers.

The Delphi trial version is
available from Borland
Online at http://www.bor-
land.com/delphi20/ or on
CD (shipping and handling
charges additional).
The “Learn to Program with

Delphi” package and the low-
price version of Delphi 2 are
available now. “Learn to
Program with Delphi” is
US$49.95; the modified of
Delphi 2 is US$99.95.
Borland Presents Golden Gate Internet &
Intranet Strategy
Anaheim, CA — In a
keynote presentation to
more than 1,500 developers
at the 7th annual Borland
Developers Conference,
Borland presented its overall
Internet strategy and
demonstrated new technolo-
gies, including products
from the planned acquisition
of Open Environment Corp.

Referred to as the Golden
Gate initiative, Borland
plans to merge both phases
of its Internet plans: release
Internet-enabled versions of
its existing products; and
then add Intranet solutions
for the workgroup market
segment.
With its Golden Gate
strategy, Borland hopes to
assist users building
Internet-based applications
by integrating existing
investments in client/server
architectures with the
emerging Internet technolo-
gies. The strategy includes
combining object-oriented
development tools, Delphi,
Latte, IntraBuilder, Borland
C++, as well as Open
Environment’s Entera tech-
nology and related Internet
products.

For more information, con-
tact Borland at (408) 431-
1064 or visit Borland Online
at http://www.borland.com.
VCL Contest Winners Announced

Scotts Valley, CA — SAMS

Publishing and Borland
Press have announced the
winners of Delphi
Informant’s VCL Contest.
Due to the extended dead-
line and delay in posting
results, SAMS and Borland
are awarding an extra book
to each of the winners.
Database Developer’s Guide
with Delphi 2 will be award-
ed in addition to Delphi
Developer’s Guide, Second
Edition as part of the VCL
contest prize package. Top
winners will also receive
US$100 and a six-month
subscription to Delphi
Informant.

VCL entries were judged
by representatives from
Borland International,
SAMS Publishing, and
Informant Communications
Group, Inc. for originality
and functionality. Entries
were received from around
the world in each of the five
categories.

The winner in the
Internet/Communications
category was Jower Garcia
Toppin of Venezuela.

6 October 1996 Delphi Informant

News
L I N E

Oc tobe r 1996

Borland Announces
Resignation of CFO

Borland has announced
the resignation of David

Mullin, vice-president and
chief financial officer. Mullin

will to continue his duties
until mid-September.

Borland is currently seeking
a replacement for Mullin.
VCL Contest Winners Announced (cont.)

Toppin submitted Mail

eXtension, a visual compo-
nent adding e-mail features
to Delphi applications,
supporting Lotus Notes,
cc:Mail, and Microsoft
Mail and Exchange.

Lance Leverich of Kansas
submitted the winning
entry in the Database cate-
gory. His TMailLabel com-
ponent is used to define
and print mailing labels,
allowing developers to set
the LabelDefinition to pro-
vide a pre-defined label lay-
out. Using the various link
fields, developers can set
the interface to the data-
base(s) for retrieval of mail-
ing address information.

Jan Dekkers of SkyLine
Tools in CA submitted
ImageLib, the winning
entry in the Multimedia
category. ImageLib 3.1,
from Skyline Tools, is a
software development tool
allowing programmers to
implement BMP, CMS,
GIF, ICO, JPG, PCX,
PNG, SCM, THB, TIF, and
WMF images into an appli-
cation. In addition, AVI,
MOV, MID, WAV, and
RMI formats can be imple-
mented to or from a file or
database BLOB field.

The winning entry in the
Interface category was
received from Peter Andrew
Van Lonkhoyzen of South
Africa. Van Lonkhoyzen’s
TDocPanel is derived from
TPanel and acts as a dock-
able toolbar with customiz-
able behavior. The Dockbar
package contains both 16-
and 32-bit versions of the
control.

Kenneth Clubb of
Maryland submitted the
winning entry in the Other
category, with
TConnections, a special
TPanel that shows master-
detail relationships by
drawing lines between
TTables and TDataSources.

Clubb was also the Grand
Prize Winner for his Master-
Detail Explorer, which pro-
vides a view of master-detail
information for program-
mers and users. Each level of
the tree expands into
detailed information when
selected, displaying up to
eight levels of detail.

In addition to the prizes for
winning the Other category,
Clubb will receive a
US$1,000, a copy of Delphi
Informant Works ’96 and
Delphi Client/Server, and an
additional copy of each of
the Delphi books from
Borland Press for winning
the Grand Prize.

A list of winners is available
on SAMS’ Web site
(http://www.mcp.com/sams),
Borland’s Web site
(http://www.borland.com),
SAMS’ CompuServe forum
(GO SAMS), and Borland’s
CompuServe forum (GO
BORLAND).
Borland Announces Availability of its Latest Version of InterBase

Scotts Valley, CA — Borland

International Inc. has
announced version 4.2 of
InterBase. This version of
InterBase has improved per-
formance and resource usage,
due to an enhanced version of
the SuperServer Architecture.

InterBase 4.2 features
ODBC 2.5 drivers for
Windows 95 and Windows
NT, and thread-safe 32-bit
client libraries. It is also
compatible across the
Windows and UNIX envi-
ronments maintaining one
consistent API, database
format, and SQL language.
This consistency across
platforms enables develop-
ers to write a server applica-
tion once, and deploy it to
either Windows or UNIX
operating systems.

By adhering to industry
standards such as SQL 92,
and offering 32-bit ODBC
drivers for Windows 95 and
Windows NT, users can inte-
grate third-party software
products. In addition,
Borland partnered with
Visigenic Software earlier this
year to develop the InterBase
ODBC drivers.
The InterBase SuperServer

Architecture offers thread-safe
client and multi-threaded
server. Its unique versioning
engine ensures data availabili-
ty for both transaction pro-
cessing and decision support
style applications.

InterBase 4.2 also includes
performance enhancements
for large multi-user systems;
32-bit GUI tools for interac-
tive SQL, server, and license
management; 32-bit ODBC
drivers for Windows 95 and
Windows NT; license man-
ager expert to ease user
license management; identi-
cal code base and feature set
across Windows 95 and
Windows NT platforms. It
is also certified and opti-
mized for Microsoft NT
4.0, and tuned for use with
Borland’s forthcoming Java
JDBC driver for InterBase
and InterClient.
The InterBase 4.2 family of

products includes: Local
InterBase (a single user version
of the server), US$249.95;
InterBase Server for Windows
95 (a multi-user server for up
to four concurrent users),
US$599.95; and InterBase
Server for Windows NT (a
departmental-to-enterprise
server including five user
licenses), US$850.

For more information visit
Borland Online at
http://www.borland.com.

7 October 1996 Delphi Informant

On the Cover
Delphi 2 / Object Pascal / OLE

By Cary Jensen, Ph.D.

OLE Automation
Controlling One Application with Another
O LE automation is a convention by which one application can control
another. The controlling application is referred to as the automation

client, and the one being controlled is referred to as the automation server.
The 32-bit applications you build with Delphi 2 can be automation clients
or servers, or both.
In general, there are two types of automation
servers: in-process and local. In-process servers
are DLL-based, and local servers are .EXE-
based. Again, you can easily create both of
these with Delphi 2.
OLE automation servers can make proper-
ties and methods available to the automa-
tion client. Provided the automation server
developer designs the server appropriately,
the automation client can exert detailed
control over the server.

Using an Automation Server
The four steps to using an automation
server are:
1) Declare a variant. A variant is a loosely-

typed variable that you employ to access
and control the automation server.

2) Open the automation server using the
CreateOLEObject function.

3) Set the properties and/or call the methods
of the server.

4) Release the server when you are done.

Declaring a Variant for Use with a Server
Delphi 2 introduces a new data type called a
variant, a variable whose type does not have
to be known at compile time. In most cases,
variants are used to control automation
servers. The following is an example of how
you can declare a variable named MyServer to
be of the type variant:

var
MyServer: Variant;

Opening an Automation Server
You open an automation server by calling
CreateOLEObject. This function is declared
in the OLEAuto unit. Therefore, you must

On the Cover

Figure 2: The SPELL project Memo object.
include the OLEAuto unit in the uses clause of the unit from
which you call CreateOLEObject.

CreateOLEObject requires a single string parameter containing
the name of the automation server. This is the name the server
registers in the HKEY_CLASSES_ROOT key of the Registry,
and it associates the server with a CLSID (class ID), a value
assigned to the server by Windows when the server is registered.

All automation servers have a unique name, as well as a
unique CLSID. The server name is case-insensitive. Also,
Delphi does not require you to reference the CLSID when
using an automation server.

Figure 1 shows Registry Editor, a Windows 95 application
that allows you to view and edit the Registry. Notice that
the server name for WINWORD.EXE is Word.Basic.
Consequently, to open Microsoft Word for Windows
(Word) as a local automation server with the variable
MyServer, you would execute the following statement:

MyServer := CreateOLEObject('word.basic');
Figure 1: Viewing the Registry with Registry Editor.
Controlling an Automation Server
After you have opened an automation server, you can con-
trol it by setting values to its properties, or calling its
methods. Delphi does not provide you with the tools nec-
essary to discover a particular server’s properties and meth-
ods. (You could write such a tool using API calls, but that
is outside the scope of this discussion.)

Normally, you will refer to the documentation provided by
the server’s developer to learn what properties and meth-
ods are available, and how to use them.

Word publishes a method for creating a new document.
This method, FileNew, takes no parameters. Therefore,
once FileNew is opened, you can instruct Word to create a
new document by including the following statement in
your code:

MyServer.FileNew;
8 October 1996 Delphi Informant
Releasing the Server
There are two ways to release an automation server. One way
is to permit the variant to go out of scope. For example, if
you declare a variant local to a procedure, and then exit the
procedure, the server opened with the variant will close
(assuming that some other process, such as an application, is
not also using the server).

The second way to close an automation server is to assign the
constant UnAssigned to the variant. To use the same example,
for instance, to release Word as a server, you would make the
following assignment:

MyServer := UnAssigned;

Using an Automation Server Example
The project SPELL.DPR (see Figure 2) displays a simple
Memo object. When you click the button labeled Check

Spelling, the project opens Word as a local automation
server, copies the memo to the Windows Clipboard, and
then uses a series of method calls to instruct Word to spell
check the document.

When the spell check is complete, additional server
method calls are used to select the text and copy it back
into the Clipboard, from which it is pasted back into the
Memo object. Figure 3 is associated with the button’s
OnClick event handler.

SPELL.DPR is a simple example of using a local server.
However, SPELL.DPR is provided for demonstration purpos-
es only. If you attempt to use this example and Word is
already running, an exception will be raised when the code
attempts to close the server.

If you need to add spell checking to your Delphi applica-
tions, you are much better off using one of the third-party
spell checkers available, instead of a large and sometimes ill-
behaved server like Word. Delphi 2, for example, includes
the VCSpeller OCX that you can use to spell check text
without the problems associated with using Word.

Figure 3: The OnClick event handler for the Check Spelling
button.

procedure TForm1.Button1Click(Sender: TObject);
var

WinWord: Variant;
begin

StatusBar1.SimpleText := 'Spell checking...';
Application.ProcessMessages;
// Open the OLE link to WinWord.
WinWord := CreateOLEObject('word.basic');
// Select all of the memo text.
Memo1.SelectAll;
// Copy the selected text to the Clipboard.
Memo1.CopyToClipboard;
// From WinWord, create a new file.
WinWord.FileNew;
// Paste Clipboard contents into the new file.
WinWord.EditPaste;

try
try

try
// Initiate spell checking.
WinWord.ToolsSpelling;

except
// WinWord creates a message indicating that the
// spell check is complete. This generates an
// exception. Ignore this exception.

end;
// Select the spell checked text.
WinWord.EditSelectAll;
// Copy it to the Clipboard.
WinWord.EditCopy;

finally
// Close WinWord.
WinWord.Cancel;
WinWord := UnAssigned;

end; // Try-finally
except

Exit;
StatusBar1.SimpleText := 'Could not spell check'

end; // Try-except
// Bring the spell checked text back.
Memo1.PasteFromClipboard;
StatusBar1.SimpleText := 'Spell checking complete'
end;

On the Cover

Figure 5: You define the class and program name of your
automation server using the Automation Object Expert.

Figure 4: The Repository with the Automation Object selected.
Creating an Automation Server
Delphi 2 makes it easy to create automation servers from
your existing applications and DLLs. This allows you to
expose some or all of your existing application’s features to
automation clients.

The four steps to convert an existing application into an
automation server are:
1) Add a unit to your project that derives a new class from

the TAutoObject class.
2) Within this derived class, declare any methods you want

to expose to automation clients within the automated
section.

3) Within this derived class, declare any properties you want
to expose to automation clients within the automated
section. These properties must use access methods to read
and write the properties.

4) Implement the class and access methods.

This process is demonstrated with the project
AUTOEX.DPR, an automated version of the local table
packing utility described in the article “BDE Basics” [see
the March 1996 Delphi Informant].
9 October 1996 Delphi Informant
Adding a TAutoObject Unit
You add a TAutoObject unit to your project by selecting
File | New. Select the Automation Object from the Object
Repository (see Figure 4). Delphi then displays the
Automation Object Expert (see Figure 5).

In Class Name, enter a name for your derived class. Set OLE

Class Name to the complete name that you want to register
as the automation server in the Registry. Delphi will auto-
matically complete this for you, based on your chosen class
name, but you can change it if you wish.

In Description, provide a description of the automation
object. This description will also be stored in the Registry.
Finally, set the Instancing. Normally, applications use a
Single Instance value, and DLLs use Multiple
Instance.

Once you accept the Automation Object Expert, it will
create and add a new unit to your project. Figure 6 is an
example of how this unit will appear. (For more informa-
tion on registering new applications, see the sidebar
“Registration Note” on page 11.)

In this generated code, there are two critical elements to
note. First, the expert has inserted a registration procedure
that adds the server to the Registry. This procedure is
called from the unit’s initialization section. After you ini-
tially run this project, do not modify this code.

Figure 6: The Automation Object Expert creates a new unit and
adds it to your project.

unit Unit1;

interface

uses
OleAuto;

type
TOleDemo = class(TAutoObject)
private

{ Private declarations }
automated

{ Automated declarations }
end;

procedure RegisterOleDemo;
const

AutoClassInfo: TAutoClassInfo = (
AutoClass: TOleDemo;
ProgID: 'OleAutoDemo';
ClassID: '{3EE99F30-F141-11CF-82A3-444553540000}';
Description: '';
Instancing: acSingleInstance);

begin
Automation.RegisterClass(AutoClassInfo);

end;

initialization
RegisterOleDemo;

end.

On the Cover
Second, a new clause, automated, appears in the type dec-
laration. You use automated to surface properties and
methods to automation clients.

Declaring Server Methods
You declare methods for the server by adding them to the
automated clause of the type declaration. For example, to
add a method that can be called by the client, and have
this method pack a table, you can modify the type decla-
ration as follows:

type
TDelphiOLEServer = class(TAutoObject)
private

{ Private declarations }
automated

{ Automated declarations }
procedure PackTab; virtual;

end;

These methods can be declared virtual, but not dynamic.
Furthermore, they must use the register calling conven-
tion, which is the default. [Virtual and dynamic methods
are described and compared in Ray Lischner’s article
“Virtual or Dynamic” in the May 1996 Delphi Informant.]

If you want, you can include the dispid directive, followed
by an integer. This will register the method using the spec-
ified OLE Automation dispatch ID. If you do not include
dispid, the compiler will automatically assign one.

Declaring Server Properties
You declare properties that you want to expose to your
automation clients by declaring them within the automated
10 October 1996 Delphi Informant
clause. While this process is similar to how you declare prop-
erties in objects, in general, there are several restrictions:

Automated properties cannot use direct access. You must
declare and use read and write access methods for each
property you declare.
Only certain property types are permitted. These are Byte,
Currency, Double, Integer, LongInt, Single, SmallInt, string,
TDateTime, Variant, and WordBool.
You cannot use the index, stored, default, or nodefault
specifiers in automated property declarations.

To allow the automation client to define which table to
pack using a property, you can add a TabName property to
the automation server. The following is an example of how
the type declaration may appear after doing so:

type
TOleDemo = class(TAutoObject)
private

{ Private declarations }
FTabName: string;

protected
function GetTabName: string;
procedure SetTabName(Value: string);

automated
{ Automated declarations }
procedure PackTab; virtual;
property TabName: string

read GetTabName write SetTabName;
end;

Implementing Automation Methods
You implement automation methods the same way that you
implement methods for any type of object. The following is
how the GetTabName, SetTabName, and PackTab methods
might appear:

function TOLEDemo.GetTabName: string;
begin

Result := FTabName;
end;
procedure TOLEDemo.SetTabName(Value: string);
begin

if FTabName <> Value then
FTabName := Value;

end;
procedure TOLEDemo.PackTab;
var

Tab: PChar;
begin

GetMem(Tab,144);
try

StrPCopy(Tab,FTabName);
Form1.PackTable(Form1,Tab);

finally
FreeMem(Tab,144);

end;
end;

The GetTabName, SetTabName, and PackTab methods appear
as they would in any object to which you are adding meth-
ods. However, the PackTab method deserves special attention.

PackTab is called by the automation client to produce an
action by the server. From within PackTab you can set
properties of objects within the server application, call
object methods, and execute functions and procedures.

I’ve created OLE Automation servers from my existing applica-
tions for some time. However, since the release of Delphi 2.01,
I could not add an automation server unit to an existing appli-
cation and have it successfully register with the Registry. I have
only been able to register new applications.

The only way I can successfully register an existing application
is by performing the following steps. I begin by creating a new,
blank application. After saving this application to a directory, I
add the automation unit, and again save the application. I then
run the application to register it.

Once the automation server is registered, I remove the default
Form1 from this application, and add each unit from my exist-
ing application that I want to convert into an automation serv-
er. When I am done, I have a new application with all the units
and forms from my existing application, in addition to the OLE
automation unit. Furthermore, this application is a registered
automation server.

I want to point out that this may not actually be a problem
with Delphi. Instead, it may be because of the large number of
example applications I create while writing training materials. I
may have damaged my Registry, or somehow affected Delphi in
a way that prevents it from performing correctly. I haven’t tried
re-installing Delphi 2.01, but doing so may clear up this prob-
lem. If you can add an automation unit to an existing applica-
tion, you do not need to worry about the above steps.

— Cary Jensen

Registration Note

On the Cover

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
In this example, the PackTab method calls the method
Form1.PackTable, passing to it the name of the table
stored in the TabName property.
11 October 1996 Delphi Informant
Calling Your Automation Server
The automation server created in the preceding example
demonstrates how easily you can convert an existing appli-
cation into an automation server.

Using your new server from an automation client is even
easier. Simply use the technique described earlier in the
section “Using an Automation Server.”

This is demonstrated by the code in the project
CALLAUTO.DPR. The following shows how to open the
OLEAutoDemo automation server, set the TabName prop-
erty of the server, and then call the PackTab method, all
from a button’s OnClick event handler:

implementation

uses OleAuto;

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
var

PackServer: Variant;
begin

PackServer := CreateOLEObject('OLEAutoDemo');
PackServer.TabName := Edit1.Text;
PackServer.PackTab;
PackServer := UnAssigned;

end;

Conclusion
Delphi makes it easy to convert any of your Delphi 2 appli-
cations into automation servers. By doing so, you enable
other programs, even those not written in Delphi, to leverage
the features of your existing applications. ∆

The demonstration projects referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\96\OCT\DI9610CJ.
development company. He is author of more than a dozen books, including
Delphi In Depth [Osborne/McGraw-Hill, 1996]. He is also Contributing Editor of
Delphi Informant. You can reach Jensen Data Systems at (713) 359-3311, or via
CompuServe at 76307,1533.

12 October 1996 Delphi Informant

Informant Spotlight
Delphi 1 / Delphi 2 / Object Pascal

By Ray Lischner

Classy DLLs
Exporting a Class and Its Methods from a Delphi DLL
D ynamic link libraries (DLLs) are essential to Windows programming.
Fortunately, Delphi has excellent support for creating and using DLLs,

making it easy to employ a DLL to export a function or procedure. Moreover,
with just a little more work, you can export a class and its methods.
This article describes how to export a class
from a DLL, import a class in an applica-
tion, and use objects that cross module
(application and DLL) boundaries.

There are two facets of mixing classes,
objects, and DLLs:

the static, compile-time nature of export-
ing and importing classes, and
the dynamic, run-time nature of using
objects and Run-Time Type Information
(RTTI).

The general principles for dealing with these
aspects of DLLs are the same for Delphi 1
and 2, but the syntax can be different. This
article addresses the problems and solutions
for both versions.

Review of DLLs
To understand how to use classes with DLLs,
you must first understand how DLLs work
without classes. Earlier this year, Delphi DLL
basics were covered in a series of articles by
Andrew Wozniewicz [see “DLLs” Parts I
through IV in the March through June 1996
issues of Delphi Informant.] Here’s a quick
review, in case you missed that series or just
want a refresher.

A DLL can be implemented in most pro-
gramming languages. In Delphi, DLLs are
created using the library keyword in the
project’s .DPR file, instead of the program
keyword (used for creating an application).
At run time, any application or DLL can
load another DLL, calling its functions
and procedures. What makes DLLs so
attractive is that Windows keeps a single
copy of the DLL’s code in memory, no
matter how many applications load the
same DLL.

For example, a spelling checker implemented
in a DLL can be used by many applications,
such as a word processor, spreadsheet, or e-
mail tool. If all three applications use the
same spelling checker, a single copy of the
spelling checker’s code is loaded in memory,
not three. And with a little more work, the
spelling checker can share its data as well,
using a single copy of the dictionary, saving
even more memory.

A DLL can also be effective when used by a
single application. In this case, the benefit of
using a DLL is not the code sharing, but the
ability to load the DLL only when it’s need-
ed. For example, a large application might be
divided into multiple DLLs, each imple-
menting a key area of functionality. When
the function is needed, the application loads
the DLL into memory. When the function is
no longer required, the application unloads
the DLL, freeing its memory. This can
reduce the total amount of memory required
by the application.

As a more specific example, a word proces-
sor application might use a separate DLL

Figure 1: Exporting routines from a Delphi DLL.

library WPDoc;

procedure ReadWP(const Filename: string;
Doc: TDocument); export;

begin
...

end;

procedure WriteWP(const Filename: string;
Doc: TDocument); export;

begin
...

end;

exports
ReadWP name 'READDOC',
WriteWP name 'WRITEDOC';

end.
Figure 3: Calling a DLL routine dynamically.

var
DllInst: THandle;
ReadDoc: procedure(const Filename: string;

Doc: TDocument);
begin

{ Load the DLL. DllInst = 0 for an error. }
DllInst := LoadLibrary('WPDOC.DLL');
{ Import the procedure. Test Assigned(ReadDocument)

to check for errors. }
if DllInst <> 0 then

begin
@ReadDocument := GetProcAddress(DllInst,'READDOC');
ReadDocument(Filename, Document);
{ Unload the DLL when you are finished. }
FreeLibrary(DllInst);

end;
...

Informant Spotlight
for each file format it can read or write. Without DLLs,
the application would consume memory for read and write
routines for file formats the user never encounters. With
each file format in its own DLL, the application loads
only the DLL of the file format in use.

For an application to use a DLL, the DLL must export one
or more routines. The DLL contains a table of all the rou-
tines it exports. Each exported routine has a unique index,
and can also have a name that can be different from its
procedure name. For example, the word processor might
require the file format DLL to have two routines. The rou-
tine with index 1 has the exported name of “READDOC”,
and the routine with index 2 has the name “WRITE-
DOC”. A DLL that reads and writes WordPerfect files
might use the name ReadWP internally, but export the
routine under the name “READDOC”. The exports state-
ment specifies which routines are exported, with their
export names and indexes (see Figure 1).

The word processor application imports routines from the
DLL so it can call the routines as though they were part of the
application. When calling a routine from a DLL, the applica-
tion typically uses an external declaration which includes the
name and arguments of the routine, as well as the DLL name
and the exported index or name (see Figure 2). Thus, the
application never knows the internal routine names used by
the DLL; it only sees the exported interface.
Figure 2: Importing a routine from a DLL.

procedure ReadDocument(const Filename: string;
Doc: TDocument); external 'WPDOC' name 'READDOC';

procedure WriteDocument(const Filename: string;
Doc: TDocument); external 'WPDOC' name 'WRITEDOC';
Another benefit of this approach is that separate DLLs can
implement the same interface, that is, the same exported
indexes and names. After the word processor has loaded the
proper DLL that corresponds to the desired file format, the
rest of the application’s code doesn’t need to know which
13 October 1996 Delphi Informant
DLL is loaded. The application calls the interface procedures
according to their exported names. This makes it easier to
add additional file formats: just add DLLs.

An external declaration, however, ties the application to a par-
ticular DLL. In this case, the word processor needs to load the
file format routines from different DLLs at different times,
depending on the user’s file format choice. Instead of using an
external declaration, the application can use the Windows API
routine, LoadLibrary, to load a specific DLL, and then call
GetProcAddress to locate a particular routine. Figure 3 illus-
trates how the word processor can load and call the READ-
DOC routine. The path to the DLL is given by the variable
DllPath, which contains the name of the DLL the application
wants to read the bitmap (e.g. WPDOC.DLL).

Delphi 1 vs. Delphi 2
In the examples so far, an exported procedure has been
declared with the export directive. An export directive
informs Windows that the routine is being called across a
module boundary, i.e. from an application to a DLL, from a
DLL to an application, or from one DLL to another.

In Delphi 1, the export directive is required because
Windows 3.1 uses a segmented memory architecture. When
calling a routine across a module boundary, Windows must
ensure that it is using the correct data segment. The export
directive tells the compiler to generate special code at the
start of a routine to establish the correct data segment. Code
is also added to the end of the routine, restoring the data seg-
ment register to its previous value.

The export directive is not required in Delphi 2. The applica-
tion and DLL share a flat memory architecture, so there are
no memory segments to worry about. For purposes of back-
ward compatibility, the Delphi 2 compiler ignores the export
directive.

Instead of export, consider using the stdcall directive in
Delphi 2. One of the Delphi 2 compiler’s new features is its
faster, register-based calling convention. When you call a
function or procedure, Delphi doesn’t push the first three

Informant Spotlight

Figure 5: Simple spelling checker interface class.

unit SpellChk;
...
type

{ Called the suggestion callback for
suggested corrections. }

TSuggestProc = procedure(Word: PChar) of object;
{$ifdef WIN32} stdcall; {$endif}

TISpellChecker = class
public

function OpenDictionary(Path: PChar): Boolean;
virtual; export;
{$ifdef WIN32} stdcall; {$endif} abstract;

procedure ClearDictionary;
virtual; export;
{$ifdef WIN32} stdcall; {$endif} abstract;

function CheckSpelling(Word: PChar;
Suggest: TSuggestProc): Boolean; virtual; export;
{$ifdef WIN32} stdcall; {$endif} abstract;

end;
arguments onto the stack. Rather, it loads them into registers,
resulting in faster code execution. However, this calling con-
vention is only compatible with Delphi.

The stdcall directive tells the compiler not to use Delphi’s
register calling convention, but to use the Windows standard
calling convention, which pushes all arguments onto the
stack in a standard order. All Windows API routines use the
stdcall calling convention. To ensure maximum flexibility, use
stdcall for all routines exported from a DLL. The application
and DLL must declare the same calling convention, so
remember to use stdcall when importing a routine as well.

The stdcall directive is not recognized by the Delphi 1 compil-
er, which poses a challenge when writing a DLL for Delphi 1
and 2. The only way to write a simple DLL source file for
both Delphi 1 and 2 is by using conditional compilation (i.e.
$ifdef and $endif statements). The example in Figure 4
demonstrates how the pre-defined symbol, WIN32, distinguish-
es between Delphi 1 (WIN32 is not defined) and Delphi 2
(WIN32 is defined).
Figure 4: Exporting a routine for Delphi 1 and Delphi 2.

procedure ReadWP(const Filename: string; Doc: TDocument);

export; {$ifdef WIN32} stdcall; {$endif}

Figure 6: Using the same unit in an application and a DLL.
Exporting a Class
As we’ve seen, Delphi makes it easy to use normal functions
and procedures stored in a DLL. Classes and objects, however,
work slightly differently. This section describes how to export
a class from a DLL, and import a class into an application.

In Delphi 1, the first step is to declare a class’ methods
with the export directive. Use the export or stdcall direc-
tive in the class declaration. (Again, when using Delphi 2,
you might want to use the stdcall directive, to assure the
DLL can be called from applications written in other lan-
guages.) It isn’t necessary to repeat the directive in the
method implementation, or for derived classes that over-
ride the method.

If you are using conditional compilation to declare the class
for Delphi 1 and 2, you don’t need to repeat the export or
stdcall directive. The conditional compilation is kept in one
location. You can usually keep derived classes and method
implementation portable, without conditional compilation.

Figure 5 shows the declaration for the TISpellChecker class in the
SpellChk unit. This class defines the interface of a rudimentary
spelling checker. An application calls the OpenDictionary method
to load a spelling dictionary. To load multiple dictionaries, the
application calls multiple instances of OpenDictionary. The
ClearDictionary method empties the entire dictionary, and the
CheckSpelling method checks the spelling of a word. If the word
is misspelled, the CheckSpelling method obtains a list of suggest-
ed corrections. These methods are exported from a DLL for use
in an application, such as a word processor.
14 October 1996 Delphi Informant
Note that every method is declared as virtual and abstract.
An abstract method has no implementation, so a derived class
must override and implement every abstract method. This
must be done for every method you want to export from a
DLL. To understand why, consider how classes and units
work in Delphi.

The Interface Class
A class must be implemented in the same unit that it is
declared. If the TISpellChecker class was implemented in the
SpellChk unit, then the application would be linked with the
full implementation of the spelling checker (see Figure 6).
However, the point is to implement the spelling checker in a
separate DLL. So, the application needs a way to access the
class declaration for TISpellChecker without linking its meth-
ods. The solution is to declare an interface class.

An interface class, such as TISpellChecker, is a class with
abstract methods. Because an abstract method has no imple-
mentation, the SpellChk unit doesn’t define any methods for
TISpellChecker. Both the application and DLL can link with
the SpellChk unit to ensure they are using the same class dec-

Figure 7: Sharing an interface between an application and a
DLL.

Figure 8: Concrete implementation of the interface spelling
checker class.

type
TSpellChecker = class(TISpellChecker)

...
public

function OpenDictionary(Path: PChar): Boolean;
override;

procedure ClearDictionary; override;
function CheckSpelling(Word: PChar;

Suggest: TSuggestProc): Boolean; override;
end;

Figure 9: InitSpellChecker creates and returns a spelling check-
er object.

function InitSpellChecker: TISpellChecker; export;
{$ifdef WIN32} stdcall; {$endif}

begin
try

Result := TSpellChecker.Create;
except

Result := nil;
end;

end;

exports InitSpellChecker;

Informant Spotlight

Figure 10: Calling a virtual method.
laration for the TISpellChecker class. The DLL implements a
derived class, TSpellChecker, overriding all the abstract meth-
ods of TISpellChecker. Figure 7 illustrates the DLL imple-
menting the spelling checker, where the application and DLL
share the abstract interface class.

The derived class (e.g. TSpellChecker) is often called a concrete
class because it provides a concrete implementation of an
abstract interface (see Figure 8). Remember: do not repeat
the export or stdcall directives in a derived class.

With the TISpellChecker and TSpellChecker classes defined,
the next step is to create a TSpellChecker object in the DLL,
and return it to the application. In other situations, you
might create an object in the application, and pass it to the
DLL as a parameter to a function or procedure. In this case,
the DLL exports the InitSpellChecker function, which creates
and returns a TSpellChecker object (see Figure 9). Note that
the type of InitSpellChecker is the abstract class,
TISpellChecker. The application isn’t aware of the concrete
class, TSpellChecker, only the abstract class, TISpellChecker.

How Exported Methods Work
An application can call the exported method of the DLL
because every class has a table of virtual method pointers.
This Virtual Method Table (VMT) contains a pointer to the
code for every virtual method declared by a class and its base
classes. As such, the VMT for the interface class,
TISpellChecker, contains a pointer for each virtual method
declared by the class. When the DLL creates an instance of
the concrete class, TSpellChecker, it also creates a VMT that
points to all exported methods of the class.

The VMT for TSpellChecker originates in the DLL, so its
method pointers all point to the methods in the DLL. When
the application calls any virtual methods, it knows that it must
get the method pointer from the VMT. The application is
unaware of whether the VMT comes from the application or
DLL. Figure 10 illustrates how an application calls a virtual
method.
15 October 1996 Delphi Informant
You can think of the VMT as a means of exporting methods
which replaces the table of indexes and names. In the case of the
spelling checker, the only routine listed in the exports statement
is InitSpellingChecker. All other exported routines are methods.

Memory Management
Not all the methods of an interface class need to be exported.
Sometimes it’s useful to declare a static method to take
advantage of the fact that such a method is implemented in
the application, and isn’t called across a module boundary.

The most notable example is the Free method, which frees
the memory for an object. This method is declared static by
the TObject class. Every class inherits from TObject, there-
fore every class inherits the Free method, which calls the
object’s destructor, Destroy. Destroy is virtual, so the applica-
tion gets the method pointer from the VMT, meaning the
DLL’s destructor is called from the application.

Figure 12: Run-Time Type Information.

Figure 11: Exporting the Release method for memory manage-
ment.

type
TISpellChecker = class
public

procedure Free;
procedure Release; virtual; export;

{$ifdef WIN32} stdcall; {$endif}
...

end;

{ Replace TObject.Free to call the exported
Release method. }

procedure TISpellChecker.Free;
begin

if Self <> nil then
Release;

end;

{ Call the destructor from the DLL. }
procedure TISpellChecker.Release;
begin

Destroy;
end;

Informant Spotlight

Figure 13: How the Object Pascal is operator works.
The problem in Delphi 1 is that the destructor is not
declared with the export directive. In Delphi 2, the
destructor is not declared with the stdcall directive. If you
create the object in the DLL and free it from the applica-
tion, you can run into serious trouble. The solution is to
declare an exported method, say, Release, that calls the
destructor (see Figure 11).

Because Release is exported, it can be safely called across a
module boundary. Once in the context of the DLL, it’s safe to
call the destructor. The interface class must then redeclare the
Free method to call Release instead of Destroy. With this simple
change to the interface class, you can create an object in the
DLL and free it in the application, or create it in the applica-
tion and free it in the DLL. (Note: The Release method dis-
cussed here is unrelated to the native TForm Release method.)

Run-Time Type Information
Using the VMT to export a method makes it easy to
export a class in Delphi, but it also introduces complica-
tions. If you try to use the is or as operator, or the
InheritsFrom method, you’ll run into problems. Let’s look
at what’s happening.

A class’ VMT is part of its RTTI. The RTTI is a set of tables
that describes a class. These tables include the VMT: a table
for dynamic methods and message handlers; information
about the published properties, methods, and fields; the name
of the class; a pointer to the parent class; and other informa-
tion. Figure 12 shows the organization of a class’ RTTI.

Delphi uses the parent class pointer to implement the is and as
operators, as well as the InheritsFrom method. Compiling a class
reference as a pointer to the class’ VMT, Delphi compares
VMT pointers to test whether one class is derived from another.

For example, the is operator compares an object’s VMT
pointer to the test class’ VMT. If they aren’t the same, Delphi
16 October 1996 Delphi Informant
follows the base class pointers in the object’s VMT, until it
finds a match or runs out of base classes to compare — until
it reaches TObject, which has no base class. If Delphi finds a
match for the VMT, then the is operator returns True, other-
wise it returns False (see Figure 13).

The problem is that this scheme doesn’t work with an object
that crosses a module boundary (i.e. is passed as a parameter
to a DLL, or returned by a function in a DLL). This is
because each module has its own copy of the RTTI for its
classes. Delphi compares VMT pointers for exact equality,
which can’t happen if the VMTs being compared are from
different modules (see Figure 14).

Unfortunately, no simple solution exists for this problem.
Delphi must assume the classes are different since it has no
way of knowing otherwise. Just because two classes have the
same name doesn’t mean they are identical. You can imple-
ment a DLL that accidentally uses the class name,
TISpellChecker, but with completely different methods.
Therefore, Delphi can’t determine if two classes are identical
based solely on the class name.

The solution is to build any type checking and type cast-
ing required by your class into the class itself. For
instance, you might expand the spelling checker interface

Figure 15: Virtual methods for testing the type of an exported
object.

type
TISpellChecker = class
public

function IsEnglishSpellChecker: Boolean;
virtual; export;
{$ifdef WIN32} stdcall; {$endif} abstract;

function IsFrenchSpellChecker: Boolean;
virtual; export;
{$ifdef WIN32} stdcall; {$endif} abstract;

end;

{ In the DLL ... }
type

TEnglishSpellChecker = class(TISpellChecker)
public

function IsEnglishSpellChecker: Boolean; override;
function IsFrenchSpellChecker: Boolean; override;

end;

function TEnglishSpellChecker.IsEnglishSpellChecker:
Boolean;

begin
Result := True

end;

function TEnglishSpellChecker.IsFrenchSpellChecker: Boolean;
begin

Result := False
end;

Figure 16: Conflicting VMTs because of different versions of
TISpellChecker.

Figure 14: Objects and RTTI crossing a module boundary.

Informant Spotlight
to include different classes for different languages. Each
class implements the rules for plurals, verb conjugations,
and so on. Every class uses the same interface, but with
different implementations. To provide a common interface
for the word processor, all classes inherit from the same
base class, TISpellChecker. To test whether a spelling
checker object is an instance of TEnglishSpellChecker, the
TISpellChecker class declares virtual methods that return
this information.

Figure 15 shows the new class declarations and virtual
methods that can be used instead of the is operator. To
test whether a spelling checker object is an instance of
TEnglishSpellChecker, call the IsEnglishSpellChecker
method, which is implemented by each concrete spelling
checker class.

Version Control
Version control presents a similar problem. Imagine what
happens if there is a new version of the application with a
different interface for the TISpellChecker class. Suppose a
problem arises when installing the new DLL. In this case, the
VMT for the TISpellChecker class in the DLL doesn’t match
the VMT in the application.

As another example, let’s say that adding support for multiple
languages required the addition of several new methods. The
application and DLL must have compatible VMTs.
Otherwise, the application can easily call the wrong method
(see Figure 16).

To reiterate, Delphi has no way of knowing if the two ver-
sions of TISpellChecker have identical interfaces by looking at
the class names. It is your responsibility to ensure the applica-
tion and DLL are using the same version of the
TISpellChecker class.

To solve this problem, define a GetVersion method to
return the current version of TISpellChecker. A constant,
ExpectedVersion, records the version the application
expects. When you change the interface of TISpellChecker,
17 October 1996 Delphi Informant
it is also necessary to change the expected version number.
When the application obtains a TISpellChecker object
from the DLL, it checks the version numbers, and if they
don’t agree, the application reports the appropriate error
message (see Figure 17).

TInterface Class
To make your job a little easier, Delphi defines the
TInterface class in the VirtIntf unit. This class declares the
Release and GetVersion methods, as described in this article.

Although the TInterface class is undocumented, every ver-
sion of Delphi 1 and 2 has the source code for the VirtIntf
unit. However, each version’s source file is in a different
directory. Try looking in \DOC, \SOURCE\VCL, or
\SOURCE\TOOLSAPI. Your interface class must imple-

Figure 17: Implementing version control.

const
ExpectedVersion = 2;

type
TISpellChecker = class
public

function GetVersion: Integer; virtual;
export; {$ifdef WIN32} stdcall; {$endif} abstract;

...
end;

function GetSpellChecker: TISpellChecker;
begin

{ Get the spelling checker object from the DLL. }
Result := InitSpellChecker;
{ Check the version number. }
if Result.GetVersion <> ExpectedVersion then

raise Exception.Create(
'Incorrect version of SPELCHEK.DLL');

end;

Ray Lischner is the founder and president of Tempest Software (http://www.tem-
pest-sw.com), which specializes in object-oriented components and tools. Mr
Lischner has been a software developer for over a decade, at large and small
firms across the United States. He has recently finished Secrets of Delphi 2, a
book that reveals undocumented aspects of Delphi, to be published by the Waite
Group Press this autumn. You can reach Mr Lischner at delphi@tempest-sw.com.

Informant Spotlight
ment ExpectedVersion as a constant, so it is not part of the
TInterface declaration.

Conclusion
DLLs can be extremely useful in Delphi programs. And as
we’ve seen, you can even export a class from a DLL by fol-
lowing a few simple rules. You must first define an inter-
18 October 1996 Delphi Informant
face class, declaring all exported methods as virtual,
abstract methods. In Delphi 1, you must supply the export
directive; in Delphi 2, you might want to use stdcall.
Derive the interface class from Delphi’s TInterface class to
automatically get version checking and memory manage-
ment (i.e. so objects can be created in one module and
freed in another). Type checking and type casting are not
generally permissible with exported objects, but you can
write additional methods to support this functionality, even
if in a slightly restricted form. ∆

The demonstration project referenced in this article is available
on the Delphi Informant Works CD located in
INFORM\96\OCT\DI9610RL.

19 October 1996 Delphi Informant

Visual Programming
Delphi 1 / Object Pascal

By Keith Wood

Saved by an Expert
An Expert to Generate a Screen Saver Application
Delphi 1 provides many ways for developers to reuse code with mini-
mal effort. These include the components we drop on our forms and

the other objects that Delphi defines. In addition, Delphi 1 provides us with
the Gallery, a container of templates and experts for forms and projects.
Templates allow us to copy static code that
we have previously developed, while experts
allow us to interact with the code generation
to customize it for our needs. In this article,
we’ll develop a Delphi expert to generate a
project framework. To make this worthwhile,
we need an application that’s interesting,
hopefully useful, and not too trivial. A screen
saver seems to fit the bill nicely — it’s a fairly
simple application with code that is common
(indeed required) across all screen savers, and
features several extras that we can have our
expert automatically include or exclude.

Screen Saver Basics
Screen savers serve two functions on a com-
puter system:
1) They are used to protect the monitor

from phosphor burn that can be caused
by leaving an image on the screen too
long. This is not really a problem any-
more with newer monitors.

2) They can be used to hide and possibly pro-
tect information on the screen from other
people when the system is unattended.

all right — maybe there’s a third function:
3) Entertainment! For example, some screen

savers play vignettes of a longer story, or
show selections from collections of graph-
ics or cartoons.

A screen saver is really just an ordinary
program that has been renamed with an
.SCR extension instead of the normal
.EXE. It’s expected to interact with the
Windows Desktop through the Control
Panel, and display its configuration or
saver screen when requested. It should also
define a title appearing in the list of avail-
able screen savers.

From the Command Line
The program determines which mode it
should start in — configuration or display —
based on command line parameters passed to
it. For example, if a /S switch is present, the
screen saver opens its display window to
cover the entire screen and begins drawing
on it. The screen saver must then monitor
the system for any user activity, via the
mouse or keyboard, which then causes it to
close itself.

Conversely, if a switch isn’t present, the pro-
gram opens its configuration form. This
allows the user to control the display screen’s
appearance. These parameters can be stored
in an .INI file for use when the display
screen appears. Typically the form features a
Test button that the user can press to view
the effects of the configuration selections.

Some screen savers allow users to specify a
password to prevent unauthorized users from
halting it and returning to the original pro-
grams. To implement this, two additional
forms are required. One to allow the pass-
word to be changed, and another to ask for
the password when the saver is running. An

Figure 1: This project source code allows the screen saver to
swap main forms based on a command-line parameter.

begin
{ Only one instance is allowed at a time }
if hPrevInst = 0 then

begin
{ Display }
if (ParamCount > 0) and

(UpperCase(ParamStr(1)) = '/S') then
begin

{ fmDisplay needs to be the main form }
Application.CreateForm(TfmDisplay, fmDisplay);
Application.CreateForm(TfmConfiguration,

fmConfiguration);
end

else
{ Configure }
begin

{ fmConfiguration needs to be the main form }
Application.CreateForm(TfmConfiguration,

fmConfiguration);
Application.CreateForm(TfmDisplay, fmDisplay);

end;
Application.Run;

end;
end;

Visual Programming
option on the configuration screen allows the user to enable
or disable this feature, and has a button that allows the user
to change the password.

The actual drawing of the display screen can show anything
imaginable. One possibility is to manipulate the original
screen image, causing it to dissolve, re-arrange, or be “eaten”
by something. To do this, we need to capture an image of the
screen just before the screen saver starts, and use the image as
the starting point for our activities.

Sounds fairly simple doesn’t it? We could just write one
screen saver and then copy the code when we want to write
another, adding or deleting the bits that we need in the new
version.

The workable solution is to create a screen saver expert. We’ll
then install the expert into the Delphi environment, allowing
us to quickly generate a generic screen saver and add code to
customize it.

Forms: First Things First
The application should create the configuration and display
forms automatically. In configuration mode the user will
probably want to test the saver with the new parameters,
requiring the display screen to be available. While in display
mode, we must also create the configuration form to provide
access to the user parameters.

Regardless of the mode we’re in, the configuration form pro-
vides a single point for loading the parameters. Normally,
each form that is auto-created is constructed in the code of
the project source, with the main form as the first to appear.
This form is made visible while the others are hidden.
However, we want different forms to be the main form in
each of the screen saver’s modes.

To accommodate the different ways of invoking the screen
saver we must modify the code in the project source. We want:

the display form to be the main form when the program
is invoked with a /S parameter, and
the configuration form to be the main form at all other
times.

Therefore, depending on the mode, we must alter the order
of creation of these two forms.

The code in Figure 1 shows this form selection based on the
mode. It also includes a check to ensure that only one copy
of the screen saver program is running. The hPrevInst variable
contains the handle of the previous instance of this program.
If it’s zero, then there is no previous instance and we can con-
tinue. If it’s non-zero, the program takes no further action
and terminates.

The screen saver’s title is also encoded in the project source.
The {$D} compiler directive is used to insert the name into
the executable. It must appear with an identifier of SCRNSAVE
20 October 1996 Delphi Informant
and can only be present in the project source itself — not one
of the units. Only one of these entries can exist, per project.

Here’s a screen saver name example:

{ Description that appears in drop-down list }
{$D SCRNSAVE Dropping Off}

The configuration form loads the screen saver parameters from
their location — in our case from an .INI file — and displays
them onscreen. These can be updated and saved back to the file
for later use. The parameters themselves depend on the screen
saver being implemented and cannot be automatically generated.

The form contains three standard buttons:
1) OK saves the parameters and closes the form,
2) Cancel closes the form without saving, and
3) Test makes the display form visible.

If the screen saver is password protected, the form also con-
tains a check box controlling whether to ask for the pass-
word, and a button allowing the user to enter a password.

The display form is a borderless window that maximizes on
creation and stays on top of all other windows. It contains a
single Timer component that allows for the periodic updat-
ing of the display for the screen saver. This Timer is enabled
when the form is shown, and disabled when it’s hidden.

To allow the form to monitor all user activity, we create a
customized message handler and direct all messages for the
form to it using:

Application.OnMessage := DeactivateScreenSaver;

Within this message handler, we check if the message relates to
a mouse movement, mouse click, or key press. If one of these is

21 October 1996 Delphi Informant

detected, the user has returned and the screen saver is termi-
nated. Figure 2 shows the complete message handler code.

The message type is available through the handler’s
Message property. Small mouse movements — less than
five pixels — are ignored, as it’s assumed that these are not
intentional. The bHandled parameter is set to indicate
whether this handler responded to the message sent. Note
that the call to StopMonitoring at the beginning deactivates
this message handler for the duration of its execution.

And the Password Is ...
If the screen saver is password protected, we must ask for
the password when we detect the user’s return. This is
done by the fmPassword form that is created and displayed
in response to any user activity. If the password entered
matches that held in the configuration form, then the
screen saver terminates as before. Otherwise the message
handler is reactivated and the screen saver continues.

The change password and password request forms are
straightforward. The former implements several checks to
ensure that the password is only altered by an authorized
person and that the new password is confirmed and differ-
ent from the original. The latter simply asks the user to
enter a password.

All the edit fields on these forms have their PasswordChar
property set to *. This causes the characters entered to be dis-
played as this character, hiding the actual values.
Additionally, the edit fields have their MaxLength property
set to 8 to limit the password’s length.

Note that in the password request form, all key strokes are
previewed by the form, through setting its KeyPreview prop-
erty to True and adding a method to the OnKeyDown event.
This method discards the AF and AE sequences
since we don’t want the user to switch to another program
while the screen saver runs.

Capturing the Image
To have the screen saver manipulate the screen image, we
need to copy and draw it on the display form. Delphi pro-
vides no direct way of accessing the screen image, so we must
resort to the appropriate Windows API calls to achieve this.

We call the GetDC function to obtain a handle to the screen
image. Normally we would pass the handle of a window to
GetDC and then receive a handle to the device context (usu-
ally encapsulated by Delphi’s TCanvas) of its client area. If,
instead, we pass a handle of zero, we receive a handle to the
device context of the screen itself. This can then be copied to
a bitmap for later use. Figure 3 shows the Object Pascal
required to capture the screen image.

The timing of this activity is critical. We must capture the
screen before the screen saver is made visible or we’ll only get
an image of ourselves. The place to capture the screen, there-
fore, is in the OnCreate event of the form. Unfortunately, at
this stage the form itself has not yet been created and thus
cannot be referenced. This means that we cannot transfer the
screen image directly to the Canvas of the form.

For this reason, we create a bitmap to hold the image and
copy it there instead. This is then transferred to the form
the first time that its OnPaint event is invoked using the
canvas’ Draw method. This also means that the screen
image is available throughout the screen saver’s execution.
Of course, both the device context and the bitmap must be
freed (when possible) to return their resources to Windows.

Now that we have all the pieces necessary to build a generic
screen saver, we can incorporate them into an expert to auto-
mate the building process.

Delphi Experts
Delphi experts are a mysterious breed. Online Help contains
entries that describe how to use them, but it does not con-

Figure 2: The message handler for the display screen.

{ Check for any user activity and stop when found }
procedure TfmDisplay.DeactivateScreenSaver(

var msg: TMsg; var bHandled: Boolean);
var

bDone: Boolean;
begin

StopMonitoring; { Don't monitor further messages }

{ Check for largish mouse movement }
if msg.Message = WM_MOUSEMOVE then

bHandled := (Abs(LOWORD(msg.lParam) - ptOrig.x) > 5) or
(Abs(HIWORD(msg.lParam) - ptOrig.y) > 5)

else
{ Or for key presses or mouse clicks }
bHandled := (msg.Message = WM_KEYDOWN) or

(msg.Message = WM_SYSKEYDOWN) or
(msg.Message = WM_ACTIVATE) or
(msg.Message = WM_NCACTIVATE) or
(msg.Message = WM_ACTIVATEAPP) or
(msg.Message = WM_LBUTTONDOWN) or
(msg.Message = WM_RBUTTONDOWN) or
(msg.Message = WM_MBUTTONDOWN);

bDone := bHandled;
if bDone then

begin
{ Check whether screen is password controlled }
if fmConfiguration.cbxPassword.Checked then

begin
fmPassword := TfmPassword.Create(self);
try

if fmPassword.ShowModal = mrOK then
bDone := (fmPassword.edPassword.Text =

fmConfiguration.sPassword)
else

bDone := False;
finally

fmPassword.Free;
end;

end;

if bDone then
{ Password OK or no password }
Close;

end;

StartMonitoring; { Monitor all messages }
end;

Visual Programming

Figure 3: Capturing the screen image for the display form.

{ Capture screen to bitmap. Must do this before
the form shows! }

procedure TfmDisplay.FormCreate(Sender: TObject);
var

h: HDC;
begin

bFirst := True;
bmpScreen := TBitmap.Create;
bmpScreen.Height := Screen.Height;
bmpScreen.Width := Screen.Width;
{ Get handle to device context for the screen }
h := GetDC(0);
{ And copy to internal bitmap }
try

BitBlt(bmpScreen.Canvas.Handle, 0, 0,
Screen.Width, Screen.Height,
h, 0, 0, SRCCOPY);

finally
{ Must release device context back to Windows }
ReleaseDC(Handle, h);

end;
end;

Visual Programming
tain information on how to develop a new one. Fortunately,
the source code for the Application and Dialog experts is
available in DELPHI\DEMOS\EXPERTS under the
ExptDemo project. From these we can divine how they work
and implement one of our own.

First, we find that an expert is implemented as a DLL with
certain pre-defined entry points. So all we must do is fol-
low this formula and generate our own expert in a DLL.

From examining the ExptDemo project, we see an expert is a
class derived from TIExpert, which defines a number of
methods that must be overridden. These return various pieces
of information about the expert, including its name and
description, an image to represent it in the Gallery, whether
it’s a form, project, or standard expert, and its current state.

An id string must also be defined. This consists of a two-part
name: the first part typically identifies the vendor or author,
and the latter identifies the expert itself. Together these
should be unique within Windows. Finally, there is the
Execute method that actually runs the expert when request-
ed. Further comments on all of this are available in the
ExptIntf unit (located in your DELPHI\DOC directory).

For the expert to be correctly linked into Delphi’s IDE, it
must be registered. This is achieved by the InitExpert func-
tion that is exported from the DLL. InitExpert is called by
Delphi while the IDE loads. After some initialization,
InitExpert makes calls to RegisterProc (it’s passed in as a para-
meter) with an instance of each expert to register.

Copying this project and modifying the various pieces to
implement our own expert results in the ScrSavEx project file
that accompanies this article.

The application expert (the one we’re copying) is actually
implemented in the APP.PAS file. The interface procedure,
the one invoked by the Execute method of the expert class,
22 October 1996 Delphi Informant
displays the expert’s form and requests input from the user.
Once this has been completed, it performs some initializa-
tion, generates the source and .DFM files required by the
application, and opens the completed project, allowing the
programmer to further customize it.

The form displayed to the user employs a notebook compo-
nent to hold the different pages of information being request-
ed. The user can navigate these pages using the Next and Prev

buttons. An image on the form provides visual feedback on
the purpose of the current page, and can be used to indicate
the effects of various options on that page (see the Dialog
Expert for an example of this).

On the final page, the Next button becomes a Create button.
When it’s pressed, Create generates the project. The user can
also press the Cancel button to terminate the process at any
time. To allow our expert to better integrate with Delphi, we
should follow this layout and behavior.

Our expert uses only two pages. The first requests the screen
saver’s title and the interval for the Timer, and provides options
to capture the screen image at startup and/or to password protect
the screen saver. The second page requests the name of the pro-
ject for this screen saver and the directory in which to store it.

After the user enters the appropriate details, the expert gener-
ates the requested code. First it needs to load the snippets of
code that comprise the project. These are held in a string
resource file in the example experts and are read into an array
of PChars by the InitCodeGeneration procedure.

Resource files allow an application’s various components to be
separately maintained and easily altered (e.g. when changing
to another language). The string resource can be changed
using Borland’s Resource Workshop, or by compiling
resource source files using Borland’s Resource Compiler. The
example experts take the latter approach. This is invoked
through the BUILD.BAT batch file.

Bitmaps that the experts can display are also stored in a
resource file, and can be altered using Delphi’s Image Editor
(you can also use Borland’s Resource Workshop to alter
bitmaps). Both of these resources are included in the final pro-
ject with the {$R} compiler directive in the project source file:

{ Bitmaps for the expert }
{$R SCRSAVBM.RES}

{ String resource for the expert }
{$R SCRSAVST.RES}

The string resource containing the code snippets must be
located and made available for use within the program. This
is done by the LoadResource and FindResource Windows API
functions, which copy the named resource into memory and
produce a handle to it. The resource is then locked to prevent
it from being overwritten in memory, and a pointer to it is
returned so that we can access it directly.

Figure 4: The function to generate the project source for the
screen saver and return the file name to the caller.

{ Generate the source for the project file,
with the specified name }

function GenerateProjectSource(
fmExpert: TfmScrSavExpert): TFileName;

var
stmSourceFile: TFileStream;

begin
{ Create the full path and name for the project file }
Result := fmExpert.edPath.Text;
if (Result > EmptyStr) and

not Result[Length(Result)] in [':', '\']) then
Result := Result + '\';

Result := Result + fmExpert.edName.Text + sProjectExt;

{ Check whether file can be created }
CheckFileOverwrite(Result);

{ Create the file and write the code to it }
stmSourceFile := TFileStream.Create(Result, fmCreate);
try

WriteSnippetFormat(stmSourceFile, csProjectBegin,
[fmExpert.edName.Text]);

if fmExpert.cbxPassword.Checked then
WriteSnippetFormat(stmSourceFile, csProjectPwd,

[LoadStr(iPasswordFile),
LoadStr(iChgPswdFile)]);

WriteSnippetFormat(stmSourceFile, csProjectEnd,
[LoadStr(iDisplayFile),
LoadStr(iConfigFile),
fmExpert.edTitle.Text]);

finally
stmSourceFile.Free;

end;
end;

Figure 5: The procedure to generate the .DFM file for the dis-
play form.

{ Generate the .DFM file for the screen display form }
procedure GenerateDisplayFormFile(

fmExpert: TfmScrSavExpert);
var

sFormName: TFileName;
stmFormFile: TFileStream;
stmTextFile: TMemoryStream;

begin
{ Create the full path and name for the screen

display form resource file }
sFormName := GetFileName(fmExpert.edPath.Text,

iDisplayFile, sResourceExt);

{ Check whether file can be created }
CheckFileOverwrite(sFormName);

{ Create text version of file and write object
descriptions to it }

stmTextFile := TMemoryStream.Create;
try

WriteSnippet(stmTextFile, csDisplayForm);
if fmExpert.cbxCapture.Checked then

WriteSnippet(stmTextFile, csDisplayFormCapt);
WriteSnippetFormat(stmTextFile, csDisplayFormEnd,

[fmExpert.spnInterval.Value]);
{ Return to the beginning of the file for conversion }
stmTextFile.Position := 0;
{ Create resource version of file and convert

from text version }
stmFormFile := TFileStream.Create(sFormName, fmCreate);
try

ObjectTextToResource(stmTextFile, stmFormFile);
finally

stmFormFile.Free;
end;

finally
stmTextFile.Free;

end;
end;

Visual Programming
The code snippets consist of text blocks that are each ter-
minated by a vertical bar (|). This delimiter is searched
for within the resource, with each section being pointed to
by the next position in the array. The delimiter is changed
to a null character so the array elements appear to be
PChars. Note that the for loop controlling this assignment
uses the Low and High functions to avoid hard-coding the
first and last values in the TCodeSnippet type.

The code for use in generating the basic screen saver can
be taken from an actual screen saver project. Code from
each of the units is combined into a single text file with
vertical bars terminating the different sections, including
the optional parts. During the generation process, place-
holders act as substitutions for variable values. This is
done using the StrLFmt function wherein string positions
are marked by %s and integer values by %d.

Loaded with Code
With the code snippets loaded, the code can now be gen-
erated. First we produce the project source by construct-
ing its name from the details (provided by the user) and
then writing the necessary code from the code resource
into that file, substituting values where appropriate (see
Figure 4). Then each of the program units follows, gener-
ating the Object Pascal source and the corresponding
.DFM file.
23 October 1996 Delphi Informant
To generate the .DFM files, we capitalize on the fact that
they can be represented as a “straight” ASCII text file. To see
this we can select File | Open File from the menu, change the
file type to .DFM, and load any form file. Delphi then pre-
sents us with a list of all the objects comprising the form with
those properties that do not have default values being set.
Objects that are contained within another on the form
appear within the definition of that object. This file can be
altered as text and is then converted back into its normal
binary format by Delphi.

We can do the same with the ObjectTextToResource procedure.
It takes two parameters, being streams that connect to the
text source for the file and another for the binary output.
Figure 5 is the Object Pascal code that generates the .DFM
file for the display form.

The code snippets to construct the .DFM files are included
in the string resource as described earlier. Each is opened in
its text format, and cut and pasted into the combined text
field of all snippets.

For all files being generated, we check that they do not
already exist, and ask permission to overwrite them if they

Visual Programming

Figure 6 (Top): The Options screen from the Screen Saver Expert.
Figure 7 (Bottom): The Create screen from the Screen Saver
Expert.

Figure 8: The LoadConfig procedure after being amended. Note
that all but two lines are generated by the expert.

{ Load configuration parameters from .INI file }
procedure TfmConfiguration.LoadConfig;
var

inifile : TInifile;
begin

inifile := TInifile.Create(sConfigFile);
try

with inifile do begin
spnSize.Value :=

ReadInteger(sIniSection,sIniSize,4);
spnSpeed.Value :=

ReadInteger(sIniSection, sIniSpeed, 10);
cbxPassword.Checked :=

ReadBool(sIniSection, sIniProtected, False);
sPassword :=

ReadString(sIniSection, sIniPassword, '');
end;

finally
inifile.Free;

end;
end;
do. If permission is refused, the expert terminates without
completing the new project. Because we have locked the
string resource into memory, we must remember to unlock it
and free the space it was using at the end of the process. This
is done in the DoneCodeGeneration procedure.

Open the Project
Finally, after all the code is generated in its appropriate
format, we tell Delphi to open the new project with the
OpenProject method of the ToolServices object. This loads
in the nominated project and opens its main form for
editing (in our case the display form, since this appears
first in the project source). We also open the configuration
form directly with OpenFile since both these forms are
typically amended by the programmer (more information
on the ToolServices object is available in the ToolIntf unit
in the DELPHI\DOC directory). The programmer can
now customize the project knowing that the pieces
required for the screen saver to correctly interface with
Windows are already in place.

Before it can be used, the expert must be compiled into a
DLL. This assumes that the string resource has already been
compiled from its own source files. However, searching
through the IDE reveals no way of adding our expert to the
Gallery. Templates can easily be added from the Gallery itself
by clicking on the Add button. However, this is disabled
when we move to the Experts tab.

Some further searching provides the answer. The experts are
notified to Delphi through its initialization file,
DELPHI.INI. DELPHI.INI has a section called Experts,
with a list of the DLLs that contain them. To install another
one, simply add its name to the list, for example:

[Experts]
ExptDemo=C:\DELPHI\BIN\EXPTDEMO.DLL
ScrSavEx=C:\DELPHI\EXPERT\SCRSAVEX.DLL

Delphi must then be re-started to acknowledge these changes.
Note that the expert must be unloaded — by removing its
entry and re-starting Delphi — before it can be re-compiled
following alterations.

Generating the Screen Saver
Now we’ll use the Screen Saver Expert to help us write our
screen saver. It’s named Dropping Off and appears to shave off
sections of the screen and drop them down and off the screen.

From Delphi’s menu, select Options | Environment and
click on the Preferences Tab. In the Gallery group, make
sure the Use on New Project option is checked. Click OK

when you’ve verified this. Now, from Delphi’s menu, select
File | New Project to display the Project Gallery. Click on
the Experts tab and double-click on the Screen Saver
Expert. On the Options screen, check the Capture screen

at start and Password protected check boxes. Leave the
Timer interval at its default value and enter the title of the
screen saver (see Figure 6).
24 October 1996 Delphi Informant
Click the Next button to advance to the second page. Enter
the name of the project, DropOff, and select a directory in
which to store it (see Figure 7). Press the Create button and
watch the code appear.

On the configuration form add two spin edit controls
along with their labels. These control the size of the sec-
tions dropped and their speed down the screen. Set their
properties appropriately: range 1 to 10, initial values 4 and
10 respectively. Change the labels to meaningful prompts
and provide for accelerator keys if required. In the code,
update the LoadConfig and SaveConfig procedures to read
and write the values for these parameters. Figure 8 is the
code for the resulting LoadConfig procedure.

Figure 9: The FormShow procedure after being amended. About
half of this is generated by the expert.

{ Enable timer and start screen saver }
procedure TfmDisplay.FormShow(Sender: TObject);
begin

iCurLine := Screen.Height;
iCurPos := iCurLine;
tmrDraw.Interval :=

500 - fmConfiguration.spnSpeed.Value * 45;
tmrDraw.Enabled := True;
StartMonitoring;

end;

Figure 10: The tmrDrawTimer procedure moves the screen sec-
tions down and off the screen. The expert generates only the
skeleton of this procedure.

{ Each timer tick draw the next dropped line }
procedure TfmDisplay.tmrDrawTimer(Sender: TObject);
var

iSize: Integer;
begin

iSize := fmConfiguration.spnSize.Value;
with Canvas do begin

{ Drop the current line one position }
CopyRect(Bounds(0, iCurPos + iSize,

Screen.Width, iSize), Canvas,
Bounds(0, iCurPos, Screen.Width, iSize));

FillRect(Bounds(0, iCurPos, Screen.Width, iSize));
Refresh;
Inc(iCurPos, iSize);

{ If at the bottom, go to the next line to drop }
if iCurPos > Screen.Height then

begin
Dec(iCurLine, iSize);
{ If at the top, start again }
if iCurLine < 0 then

begin
iCurLine := Screen.Height;
Draw(0, 0, bmpScreen);

end;
iCurPos := iCurLine;

end;
end;

end;

Keith Wood is an analyst/programmer with CSC Australia, based in Canberra.
He started using Borland’s products with Turbo Pascal on a CP/M machine.
You can reach him via e-mail at kwood@netinfo.com.au or by phone
(Australia) 6 291 8070.

Visual Programming
In the code for the display form, we add the functionality
described above: to drop sections of the screen image down
and off the screen. To start, add two variables to the private
section of the form. These record the current section being
dropped and its position on the screen. Update the
FormShow code to initialize these variables (see Figure 9). To
alter the speed of the section’s movement we set the Timer’s
Interval property from the configuration’s speed parameter (a
larger value produces a smaller interval). All this is done in
the FormShow event so that it is re-initialized each time the
screen is displayed. This may happen several times during
configuration, with different parameters each time.

Finally, add code to the Timer event to actually draw the
screen. At each tick of the Timer, we move the current sec-
tion one spot further down the screen. When it disappears we
start on the next section, and when they have all gone we
25 October 1996 Delphi Informant
start the entire process again (see Figure 10). We use the con-
figuration’s size parameter to determine how much of the
screen to move at any one time. The Brush of the form’s
Canvas is initialized in the FormCreate method to be solid
black, and is used in the FillRect routine to blank out the sec-
tion that we have just moved.

After the project is compiled it can be incorporated into
Windows along with the other screen savers. Copy the exe-
cutable to the directory containing your screen savers (typi-
cally \WINDOWS\SYSTEM) and then rename it to have
an extension of .SCR. Now open the Desktop from within
the Control Panel and our new screen saver should appear
in the list. Select it and press Setup to display the configu-
ration form. Change the parameters if required and test it.

Conclusion
One of Delphi’s key features is its ability to reuse code. Using
or inheriting from components is one way to achieve this, as
is the use of templates and experts. Templates provide static
code, while experts allow generation of customized code from
a standard base.

We have built a project expert — without too much diffi-
culty — for a useful application, and have incorporated it
into the Delphi environment. It ensures that required val-
ues are not omitted, and allows us to easily include or
exclude sections of code as we see fit. It removes the repet-
itive part of the code generation and allows us to concen-
trate on the main purpose of the application. Along the
way we’ve constructed a solid base for building custom
screen savers in Delphi.

I’d like to thank Mark Johnson for his screen saver article in
the July 1995 issue of the Delphi Connection (available on the
Internet at http://www.pennant.com/delphi.html). The code
generated by the screen saver expert is based on the code
from this source. ∆

The demonstration files referenced in this article are available on
the Delphi Informant Works CD located in
INFORM\96\OCT\DI9610KW.

26 October 1996 Delphi Informant

OP Tech
Delphi 2 / Object Pascal

By Robert Vivrette

Parentage and Ownership
Understanding the Controls and Components Arrays

Figure 1: This a
the Controls and
L ike any programming language, Object Pascal has a few features that
are obscure and not very well documented. One such feature is Delphi’s

use of the Controls and Components arrays. These arrays are internal list
structures used to keep track of components and their relation to one
another. This article clarifies their function and use in Delphi programs.
p

First, let’s take a brief look at these arrays.
The Components array is a TList structure
that is a part of TComponent and all of its
descendants. Similarly, the Controls array is a
TList structure, and a part of TWinControl
and its descendants. Therefore all descen-
dants of TComponent will have a Components
property, and all descendants of
TWinControl will have a Controls property.
Because most visual controls in the Delphi
VCL are descendants of TWinControl, you’ll
find most have both properties.
plication illustrates the relationship between
 Components arrays.
Show ...
As they say, a picture is worth a thousand
words. Here then, is a simple application that
illustrates the relationship between the Controls
and Components arrays (see Figure 1).

By clicking on an empty area of the main
form, this sample application shows which
items are in the form’s Controls array and
which ones are in its Components array. As
you can see, the Components array holds all
items that are physically on the form, while
the Controls array holds only those items
that are immediate children of the form.

If you look carefully, you’ll notice the button
and label that are on Panel1 are not listed in
the Controls array. In addition, the
Checkbox, RadioButton, EditBox, and Label
in GroupBox1 are also not listed in the
Controls array. This is because the form is
not the parent of each of these items. Rather,
their respective containers (Panel1 and
GroupBox1) are.

Two concepts — parentage and ownership —
might make things simpler to understand.

... and Tell
A component’s parent is its holder, or con-
tainer. For example, CheckBox1 is a child of

Figure 2: The result of clicking on the frame of GroupBox1.

Figure 4: Click on BitBtn1 to identify Panel1 as its Parent.

Figure 3: Click on the CheckBox item within GroupBox1 to
observe who is the Parent and Owner.

Op Tech
GroupBox1; conversely, GroupBox1 is therefore the parent of
CheckBox1.

One primary function of a component’s parent is to define
that component’s coordinate system. If we were to exam-
ine CheckBox1’s coordinates, we would see that its Left
coordinate is 16 and its Top coordinate is 32. CheckBox1
is obviously not at 16,32 on the form; rather, these coor-
dinates are relative to its parent, GroupBox1. A compo-
nent’s parent also controls other drawing-related steps,
such as the stacking order, tab order, and clipping.

A component’s owner is the object ultimately responsible
for the component’s creation and destruction. When a
component is destroyed, all other components that list the
first component as their owner will be destroyed as well.
This simplifies the programmer’s job — you don’t need to
concern yourself with the destruction of every component
on a form.

Back to Controls and Components
How does this relate to the Controls and Components
arrays? Basically, the Controls array manages parentage and
the Components array manages ownership.

Let’s use another example to illustrate. Look at what happens
when we click on the frame of GroupBox1 (see Figure 2). As
expected, the Controls property for GroupBox1 shows only its
children. However, note that the Components array is empty.
This is because Label3, CheckBox1, RadioButton1, and
Edit2 are in the form’s Components array, rather than in that
of GroupBox1.

Note also the program indicates at the top that
GroupBox1’s Parent is Form1, and its Owner is also Form1.
When we had clicked on just the form (in the previous
example), GroupBox1 was in Form1’s Controls and
Components array. This is why Form1 is listed as
GroupBox1’s Parent (in Form1’s Control array) and Owner
(in Form1’s Components array).
27 October 1996 Delphi Informant
Now if we click on an item within GroupBox1 — say the
CheckBox — observe who’s the Parent and who’s the Owner
(see Figure 3). As you can see, GroupBox1 is CheckBox1’s
Parent, but the Owner is unchanged — it’s still Form1.
Again, look at it from the reverse direction: when we had
clicked on GroupBox1, it listed CheckBox1 as one of its chil-
dren (i.e. in its Controls array). Therefore, when we clicked
on CheckBox1, it identified GroupBox1 as its Parent.
Similarly, when we click on BitBtn1, it identifies Panel1 as its
Parent (see Figure 4).

In both cases, Form1 is still responsible for the creation and
destruction of these components. In fact, you’ll find that all
the components will list Form1 as their owner. Remember,
all the components were listed in the Components array of
Form1, which therefore identifies Form1 as the owner of all
the components.

The Sample Program
The source code for this sample application is simple.
Essentially, it consists of only two event handlers: FillLists
and Reset. The Reset handler clears the two list boxes, and
identifies the item clicked, its parent, and its owner. The
FillLists handler is used only when Form1, Panel1, or
GroupBox1 are clicked. It first calls the Reset handler, and
then populates the right list box with the contents of the
Components array and the left list box with the contents
of the Controls array:

procedure TForm1.FillLists(Sender: TObject);
var

I : Integer;
begin

Reset(Sender);
for I := 0 to (Sender as TComponent).ComponentCount -1 do

ComponentsListBox.Items.Add(
(Sender as TComponent).Components[I].Name);

for I := 0 to (Sender as TWinControl).ControlCount -1 do
ControlsListBox.Items.Add(

(Sender as TWinControl).Controls[I].Name);
end;

The object passed in (Form1, Panel1, or GroupBox1) is
first cast as a TComponent. Then the ComponentCount
property determines how many items are in the
Components array. Then, it’s simply a matter of looping
through the Components array as many times as there are
items, extracting the name of each component, and
adding it to the list box. The Controls array is treated in
the same manner.

Op Tech

Robert Vivrette is Technical Editor for Delphi Informant. He has worked as a game
designer and computer consultant, and has experience in a number of program-
What Good Are They?
These arrays can be very useful in a program. Say you
want to change some property on all components on a
form (or perhaps just certain components like TPanels for
example). Using the Components array of the form is an
excellent technique to accomplish this. Consider the fol-
lowing code:

procedure TForm1.FormClick(Sender: TObject);
var

I : Integer;
begin

for I := 0 to ComponentCount -1 do
if Components[I] is TPanel then

(Components[I] as TPanel).Color := clLime;
end;

With this code, when the mouse is clicked on the form,
all Panels are changed to Lime Green. Not a particularly
useful example, but it illustrates how you can easily filter
through controls on a form and selectively make changes
to them.

The Controls array can also achieve some interesting effects.
You may want to move all controls within a Panel a relative
amount, but don’t want to disturb other controls outside the
Panel. The following code accomplishes this:
28 October 1996 Delphi Informant
procedure TForm1.Panel1Click(Sender: TObject);
var

I : Integer;
begin

for I := 0 to Panel1.ControlCount -1 do
with (Panel1.Controls[I] as TControl) do

Left := Left + 1;
end;

Every time the Panel is clicked, each of the controls within it
are moved one pixel to the right.

Conclusion
The Controls and Components arrays can be very power-
ful, if you know how to tap their power. Unfortunately,
the Delphi online Help files are a bit sparse in their dis-
cussion of these structures. Hopefully this article has
cleared up some of the confusion, and will help you
understand how to best access and manage these arrays in
your Delphi programs. ∆

The demonstration project referenced in this article is available
on the Delphi Informant Works CD located in
INFORM\96\OCT\DI9610RV.
ming languages. He can be reached on CompuServe at 76416,1373.

29 October 1996 Delphi Informant

Delphi C/S
Database Servers / InterBase / Delphi

By Bill Todd

Versioning:
The InterBase Advantage
An Examination of Database Concurrency Models
A s you rush headlong into the world of client/server computing, one of
the first things you must do is select a database server. The architec-

tures of database servers vary widely, and as a result, their behavior in a
given situation also varies widely.
This means that to select the appropriate
server for your Delphi database application
you must understand two things: how data
will be accessed and modified in your appli-
cation, and how the server will behave in
each data access or update situation.

In this article, we’ll explore the issues that
affect concurrent access to data, as well as
how they may impact your application.

Locking Schemes
The oldest and most common method of
controlling concurrent access to data by sev-
eral users is locking. When a user locks an
object in a database, he or she restricts other
users’ ability to access that object.

How much a lock affects concurrency depends
on the lock’s granularity. For example, a lock
placed on an entire table will restrict other
users’ access to all the records in the table.
Therefore, a table-level lock has very low gran-
ularity. A lock placed on a single page in a table
limits access to all the records on that page. A
page-level lock is more granular than a table-
level lock. By contrast, a lock placed on a single
row is very granular, and provides the mini-
mum restriction to concurrent data access.

Most database servers support either row- or
page-level locking. The problem with page-
level locks is easy to understand by looking at
an example. Suppose a page’s size is 2KB
(2048 bytes) and a row’s size is 100 bytes.
Thus, each page can hold 20 rows, and each
time a page is locked, access is restricted to all
20 rows. With row-level locking only a single
row would be locked, and other users could
freely access other records on the page. Thus,
row-level locking provides better concurrency.

Pessimistic Locking. If your background is
in desktop databases (e.g. Paradox), you’re
probably familiar with pessimistic locking.
This scheme is so named because it assumes
there’s a high probability that another user
will try to modify the same object in the
database you’re changing. In a pessimistic
locking environment, the object you want to
change is locked before you begin changing
it, and the object remains locked until your
change is committed. The advantage of pes-
simistic locking is that you’re guaranteed the
ability to commit the changes you make.

Let’s say you need to change a customer’s
address. Using pessimistic locking, you first
lock the customer information at either the
page or row level. You can then read the cus-
tomer’s record, change it, and be guaranteed
that you can write your changes to the data-
base. Once you commit your changes, your
lock is released and others are free to change
the customer’s record. Locks can persist for a
long time when pessimistic locking is used. For
example, you could begin a change and then
take a lunch break. After returning, you can
then commit the change and release the lock.

Clearly, you want to use locks with high
granularity if you’re going to use pessimistic
locking in a multi-user environment. If you
must lock an entire page of customer

Delphi C/S
records while changing a single row, then no other user can
change any other customer record on that page. Row-level
locks are best when pessimistic locking is used. This is
because they impose the least restriction on access by other
users. Page-level locks are much less satisfactory, because as
long as they persist, they restrict access to many rows.

Optimistic Locking. The most common locking scheme
found in database servers (e.g. Oracle, Sybase, SQL Server)
is optimistic locking. The locking mechanism is optimistic in
that it assumes it’s unlikely another user will try to change
the same row you’re changing. An optimistic lock is not
placed until you’re done committing your changes.

To understand optimistic locking, consider two users — Fred
and Ethel — who are trying to change a customer’s record.
First, Fred reads the record and begins to make changes. Next,
Ethel reads the same record and begins to make changes. This
is possible because, in the optimistic locking scheme, no lock
is placed when a user reads a record and begins changing it.

Then Fred completes his changes and attempts to commit
them. The database locks the record, commits the changes, and
releases the lock. When Ethel tries to commit her changes, the
software detects that the record has been changed since she’d
read it. Ethel’s change is rejected, and she must re-read the
record and begin again.

Optimistic locking has a clear advantage because locks are only
held for a brief period while the data is updated. This means
that with an optimistic locking scheme, you can achieve ade-
quate concurrency with less lock granularity. Therefore, data-
bases that use optimistic locking may lock at the page level and
not at the row level. Conversely, optimistic locking does not
fare well in an environment where there’s a high probability
that two users will simultaneously try to update the same row.

From the database vendor’s point of view, page-level locking
is advantageous because fewer locks must be placed — partic-
ularly during batch operations that affect many rows. This
means the resource requirements of the lock manager module
in the database management system are lower, and this can
help improve the performance of the database server.
However, users are invariably the slowest part of any database
application, so you’ll usually get better overall performance in
an environment where one user cannot block another.

Why You Should Care
Understanding how your database manages locks can be criti-
cally important. Consider an Orders table. New records are
added continuously as new orders are received. Because the
Order data does not include a field (or fields) that would
form a natural primary key, you decide to use an artificially
generated Order Number as a surrogate key. Order Numbers
will be assigned sequentially as orders are received.

Because your application must frequently select groups of
orders, you create a clustered index on the Order Number
30 October 1996 Delphi Informant
column. A clustered index provides superior performance
when retrieving adjacent records. This is because the records
are physically stored in key order within the database pages.

Unfortunately, this design will probably produce poor perfor-
mance if the database uses page-level locking. Because
sequential adjacent keys are being assigned and a clustered
index is being used, each new record added will probably be
placed on the same page as the preceding record. Because the
database locks at the page level, two users cannot add new
orders to the same page simultaneously. Each new order must
wait until the page lock placed by the preceding order is
released. In this case, you would get much better perfor-
mance by randomly assigning the keys. This will reduce the
chance that successive records will be added to the same page.

Transactions
Database servers also require the ability to group changes to
the database into transactions. Transactions consist of one or
more changes to one or more tables in the database that must
be treated as a single unit. This is so that either all or none of
the changes that comprise the transaction occur.

Transaction processing occurs in three steps: First, tell the
database you want to begin a transaction. This informs the
database that all changes — until further notice — are to be
treated as a single unit. Next, the changes are made to the
tables in the database. Finally, notify the database system that
you want to either commit or rollback the transaction. If you
commit the transaction, the changes become permanent. All
the changes are “undone” with a rollback.

Transaction processing is vital to ensure the database’s logical
integrity. Let’s say that Fred transfers $100 from his savings
account to his checking account. This transaction would pro-
ceed as follows: start a new transaction, update the savings
account balance to show a withdrawal of $100, update the
checking account balance to reflect an increase of $100, and
either commit or rollback the transaction.

Suppose the system crashes after step one, but before step
three. Without transaction control, Fred would have lost
$100. With transaction control, when the system is restarted,
the database management system (DBMS) will automatically
rollback any transactions not committed at the time of the
system’s crash. This guarantees that the database will be left
in a consistent state.

You also need transaction control for read transactions that
will read more than a single record. This is to ensure that the
read returns a consistent view of the data. We’ll discuss this
requirement in more detail in the next section.

Transaction Isolation
Transaction isolation governs how simultaneously-executing
transactions interact with each other. Many of today’s data-
base servers were originally designed to process short update
transactions intermixed with single row reads.

Delphi C/S
The perfect example of this is an automated teller machine
(ATM). An ATM reads the balance in a single account, or
updates the balance in one or more accounts. In this environ-
ment, transactions are short, and reads involve a single row at a
time, so transaction isolation is not a serious concern. However,
many of today’s database applications do not fit this model.

Short update transactions are still the norm. However, the
advent of executive information systems has introduced
long-running read transactions that span entire tables —
sometimes entire databases.

Let’s consider the following scenario. An executive requests
the total value of the company’s inventory by warehouse.
While the query is scanning the inventory table, a user
moves a pallet of platinum bars from warehouse A to
warehouse B and commits the transaction. It’s possible for
the query to count the platinum in both warehouses, thus
producing an erroneous inventory valuation report.
The question becomes, “Which updates should a read transac-
tion see, and when should it see them?” This is what the transac-
tion isolation level controls. There are three basic isolation levels:

Dirty Read — This isolation level allows any record in the
database to be read whether or not it has been committed.
Read Committed — This level allows read transactions to
see only those changes that were committed.
Repeatable Read — A repeatable read allows the read
transaction to immediately see a snapshot of the database
when the transaction began. Neither committed nor
uncommitted updates that occur after the read transac-
tion starts will be seen.

Note that the TransIsolation property of Delphi’s
TDatabase component allows you to set all three of these
isolation levels. However, this doesn’t mean that your serv-
er supports the isolation level you have selected. In addi-
tion, if you’re using an ODBC driver, the driver must also
support the isolation level you set. Search on
“Transactions | Transaction Isolation Levels” in the Delphi
online Help to view a table showing what each of these
isolation levels maps to on your server.

In the example above, you need a repeatable read isolation
to ensure the accuracy of your inventory valuation report.
The problem is the price you must pay to get repeatable
read in a database with a locking architecture. With the
locking model, the only way to ensure that data does not
change during a long read transaction is to prevent any
updates from occurring until the read transaction ends. In
many situations, the effect on users of stopping all updates
for the duration of a long read transaction is unacceptable.

Versioning
Versioning is another model for concurrency control. It over-
comes the problems that locking model databases have when
the environment consists of a mixture of update and long read
transactions. This model is called the versioning model. To date,
InterBase is the only DBMS to use the versioning model.
31 October 1996 Delphi Informant
Let’s reconsider the preceding example. The read transaction to
produce the inventory valuation report begins. When the update
transaction to move the pallet of platinum from warehouse A to
warehouse B is committed, a new version of each updated record
is created. However, the old versions still exist in the database.

In a versioning database, each transaction is assigned a
sequential transaction number. In addition, the DBMS main-
tains an inventory of all active transactions. The transaction
inventory pages show whether the transaction is active, com-
mitted, or rolled back.

When an update transaction commits, the DBMS checks if
there are transactions with lower transaction numbers that
are still active. If so, a new version of the record is created
that contains the updated values. Each version also contains
the transaction number of the transaction that created it.

When a read transaction begins, it retrieves the next transac-
tion number and a copy of the transaction inventory pages
that show the status of all uncommitted transactions. As a
read transaction requests each row in a table, the DBMS
checks if the transaction number for the latest version of the
row is greater than the transaction number of the transaction
that’s requesting it. The software also checks if the transac-
tion was committed when the read transaction started.

Let’s say the transaction number of the row’s latest version is
greater than the requesting transaction’s number; or, the
transaction which created the latest version was active when
the read transaction started. With either scenario, the DBMS
looks back through the chain of prior versions. The software
continues until it encounters a version with a transaction
number that is less than the transaction number of the trans-
action that is trying to read the row, and whose transaction
status was committed when the read transaction started.

When the DBMS finds the most recent version that meets
these criteria, it returns that version. The result is repeatable
read transaction isolation without preventing updates during
the life of the read transaction.

Consider the following example of a row for which four ver-
sions exist:

Tran=100 (status=committed)
Tran=80 (status=active when read started)

Tran=60 (status=rolled back)
Tran=40 (status=committed when read started)

Assume that a read transaction with transaction number 90
attempts to read this row. The read transaction will not see
the version of the row created by transaction 100 because the
update that created this version took place after transaction
90 began. Also, transaction 90 cannot read the version creat-
ed by transaction 80, even though it has a lower transaction
number. This is because transaction 80 isn’t yet committed.
Although the version for transaction 60 still exists on disk,
transaction 60 has rolled back — and rolled back versions are

Delphi C/S
always ignored. Therefore, the version that transaction 90
will read is the version created by transaction 40.

Note that in this example, transaction 80 is not allowed to
commit. When transaction 80 attempts to commit, the
DBMS will discover that transaction 100 has committed, and
transaction 80 will be rolled back.

Advantages of Versioning
For a more complete understanding of how the locking and
versioning models compare, you must examine two things:
the types of concurrency conflicts that can occur in a multi-
user database, and how each model behaves in each case.

The following examples assume that the locking model uses a
shared read lock and an exclusive write lock to implement
optimistic locking. Multiple users can place read locks, but
no user can place a write lock if another user has either a read
or write lock. If one user has a write lock, another user can
neither read nor write the row. This is typical of databases
that use locking architecture.

Consider the case where a husband and wife go to different
ATMs at the same time to withdraw money from their joint
checking account. Without concurrency control, the follow-
ing sequence of events occurs:

Fred reads the account’s balance as $1,000.
Ethel reads the account’s balance as $1,000.
Fred posts a $700 withdrawal.
Ethel posts a $500 withdrawal.

At this point, the account balance is -$200 and the bank is
not happy. This happened because without a concurrency
control mechanism, Fred’s update is lost as far as Ethel is
concerned. She never sees the change in the account balance.
However, under the locking model:

Fred reads the account’s balance, causing a read lock.
Ethel reads the account’s balance, also causing a read lock.
Fred posts his withdrawal, attempting a write lock that
fails because of Ethel’s read lock.
Ethel posts her withdrawal, attempting a write lock that
fails because of Fred’s read lock.

A deadlock now exists. Hopefully, the DBMS will detect the
deadlock and rollback one of the transactions.

Under the versioning model, Fred reads the account’s balance
and Ethel reads the account’s balance. Then, Fred posts his
withdrawal, which causes a new version with a new balance
to be written. When Ethel posts her withdrawal, it’s rolled
back when the newer version is detected.

A different problem occurs if a user does not commit a
transaction. Let’s say Fred withdraws money from the
account and this updates the balance. Ethel reads the balance
and Fred cancels the transaction before committing. Now
Ethel has seen the wrong balance. In this case, a dependency
exists between the two transactions. Ethel’s transaction pro-
32 October 1996 Delphi Informant
duces the correct results only if Fred’s transaction commits.
This illustrates the danger of reading uncommitted data.

Using locking, Fred reads the balance that places a read
lock, and then commits a withdrawal that places a write
lock during the update. Ethel reads the balance, which
attempts a read lock, but must wait because of Fred’s write
lock. Fred cancels the transaction before committing. This
rolls back and releases the write lock. Ethel can now read
and get the correct balance.

Under versioning, Fred withdraws the money. This updates
the balance and creates a new uncommitted version. At her
machine, Ethel reads the balance, but it does not reflect
Fred’s uncommitted withdrawal. Fred rolls back, so the ver-
sion showing the withdrawal is marked rolled back. This
illustrates a performance advantage of versioning because
Ethel does not have to wait to read the balance.

The following is a different example, but it’s the same as
our earlier scenario of moving platinum from one ware-
house to another:

Fred requests the total of all accounts.
Ethel transfers money from savings to checking while
Fred’s transaction is running.
Fred receives the wrong total. The analysis of the data is
inconsistent because the data’s state was not preserved
throughout the life of the read transaction.

Under locking, Fred requests a total of all accounts, thereby
placing a read lock. Ethel transfers money but cannot place a
write lock to commit the transfer because of Fred’s read lock.
Ethel must wait until the read transaction finishes. Finally,
Fred gets the right total and releases the read lock, and
Ethel’s transaction can proceed.

Under versioning, Fred requests the total. At her ATM,
Ethel transfers money from savings to checking, resulting
in new versions which Fred’s transaction does not see. Fred
gets the correct total and Ethel’s update is not delayed.

Another variation of the repeatable read problem occurs if
you must reread the data in the course of the transaction.
For example:

A query is started for all rows meeting certain criteria.
Another user inserts a new row that meets the criteria.
Repeat the query and you will get one additional row.
The appearance of this “phantom row” is not consistent
within the transaction.

With a database that uses the locking model, the only way
to prevent this inconsistency is to read lock the whole
table for the duration of the transaction. Thus the
sequence of events is:

Place a read lock on the table.
Query for all records meeting certain criteria.
Another user attempts to insert a record, but is blocked
by the table-level read lock.

Delphi C/S
Repeat the query and you’ll get the same results because
other users cannot commit changes.

Under versioning there’s no problem, because the newly
inserted record has a higher transaction number than the
read transaction. Therefore, it’s ignored on the second and
subsequent reads that are part of the same transaction.

Disadvantages of Versioning
So far it looks as if the versioning model handles most con-
currency conflicts better than the locking model. However,
this is not always the case. In this example, Fred and Ethel
are both told to make their salaries equal:

Fred reads his salary.
Ethel reads her salary.
Fred sets Ethel’s salary equal to his.
Ethel sets Fred’s salary equal to hers.

Under versioning, the result is that their salaries are simply
swapped. Using locking, you can prevent this by locking both
records. For example, both Fred and Ethel read their own
salaries and place read locks. Fred sets Ethel’s salary equal to
his, but cannot commit because of Ethel’s read lock.
Likewise, Ethel sets Fred’s salary equal to hers, but cannot
commit because of Fred’s read lock.

Once again, you have a deadlock that the database system
should resolve by rolling back one transaction. Another solu-
tion using locking is to write lock the entire table. For exam-
ple, Fred write locks the table and reads his salary. Ethel then
tries to read her salary, but is blocked by Fred’s table-level
write lock. Fred sets Ethel’s salary equal to his and releases
the write lock. Ethel’s transaction is now free to proceed.

Under versioning, Fred reads his salary and Ethel reads hers.
Fred sets Ethel’s salary equal to his and commits. Then Ethel
sets Fred’s salary equal to hers and commits. Once again the
salaries are swapped, because versioning allows both transac-
tions to process concurrently. The only way to solve this
problem with the versioning model is as follows:

Fred reads his salary.
Ethel reads her salary.
Fred sets Ethel’s salary equal to his.
Fred sets his salary to itself, creating a newer version.
Ethel sets Fred’s salary equal to hers, but it rolls back
because a newer version exists.

Here the problem is solved by setting Fred’s salary equal to
itself. This forces the creation of a new record version for
Fred’s salary. Versioning architecture will not allow a change
to be committed when a version of the record to be updated
exists (which was created after the start of the current transac-
tion). Therefore, Ethel’s update rolls back.

Recovery
One very important issue in any database application is
recovery time when the server crashes. No matter how robust
your hardware and software and/or how reliable your electric
power supply, there’s always a possibility the server will fail.
33 October 1996 Delphi Informant
Both locking and versioning databases will recover automati-
cally when the server is restarted. However, there’s a signifi-
cant difference in the recovery time.

Locking-model databases write each transaction to a log file.
To recover after a crash, the DBMS must read the log file and
rollback all the transactions that were active at the time of the
crash by copying information from the log to the database.

A versioning database does not have a log file. The record ver-
sions in the database already provide all the information
required to recover. No data needs to be copied from one
place to another. Instead, when the DBMS comes back on
line, it simply goes through the transaction inventory pages
and changes the status of all active transactions to rolled back.
At most this will take a few seconds, even on a large database
or one with a large number of active transactions. Thus, crash
recovery is another area where the versioning model excels.

Other Issues
At first it may appear that a versioning database has a signifi-
cant disadvantage. This is because the multiple record versions
will cause the database size to temporarily increase rapidly
compared to a locking database. While this is true, don’t for-
get that other databases also grow as their log files expand.

However, versioning databases will certainly grow rapidly if
something is not done to control the proliferation of record
versions. The DBMS performs some of the housekeeping for
you automatically. Each time a record is accessed, the DBMS
checks if any prior versions of that record are no longer need-
ed. A version is obsolete if its transaction rolled back, or if
there is a later committed version of the record and there are
no active transactions with a transaction number less than the
transaction number of the newer committed version. Versions
that are obsolete are automatically deleted and the space they
occupied in the database pages is reused.

Many rows in many databases are visited infrequently. To
remove unnecessary versions of these rows, the database must
be periodically “swept.” A sweep operation visits every row in
every table in the database and deletes outdated versions. You
can run the sweep while the database is in use, but the sweep
will impact performance while it’s running.

InterBase, by default, will automatically start a sweep after
20,000 transactions. This isn’t the best way to manage sweep-
ing, because you have no control over when the sweep will
start. In addition, the user who starts the transaction that trig-
gers the sweep is locked until the sweep finishes. It’s better to
periodically start a sweep manually when database use is low.

Conclusion
Selecting the correct database for your application requires a
clear understanding of the types of transactions the system
must process. Many applications today require a mixture of
multi-row read transactions and updates. In this environ-
ment, versioning has a clear advantage because it can process

Delphi C/S
read and write transactions concurrently while still providing
repeatable read to ensure accuracy.

Versioning also provides rapid crash recovery because there’s
no log file to process. When a versioning database restarts, it
simply marks all open but uncommitted transactions as rolled
back, and it’s ready to go.

As stated earlier, InterBase is the only DBMS to use the ver-
sioning model. In addition to the advantages of the version-
ing model, InterBase has the smallest disk and memory foot-
print (it ships on two diskettes), is self-tuning, and runs on
NetWare, Windows NT, and a wide variety of UNIX plat-
forms. Therefore, InterBase is highly scalable. ∆
34 October 1996 Delphi Informant

Bill Todd is President of The Database Group, Inc., a Phoenix area consulting and develop-
ment company. He is co-author of Delphi 2: A Developer’s Guide [M&T Books, 1996],
Creating Paradox for Windows Applications [New Riders Publishing, 1994], and Paradox
for Windows Power Programming [QUE, 1995]; a member of Team Borland; and a
speaker at every Borland Developers Conference. He can be reached at (602) 802-0178,
or on CompuServe at 71333,2146.

35 October 1996 Delphi Informant

Delphi at Work
Delphi / Object Pascal

By Douglas Horn

Return to Sender
The Lowly Sender Parameter
Can Make Applications Shine
The humble Sender parameter could be one of Delphi’s most useful
tools for modular, extensible programming. Although Sender is normal-

ly used to simply determine which object called a particular procedure, with
some creativity, this parameter can be extended to allow robust modular
programming with simple, reusable code.
Sender Basics
The Sender parameter is so ingrained in
Delphi programming that it appears in prac-
tically every program procedure. Even the
Form’s OnCreate event — which has no
sender — includes the (Sender: TObject)
parameter in its definition.

Despite this, the Sender parameter is not
necessary for a procedure to function.
Removing Sender from a procedure that
doesn’t use it results in functional code, as
long as the parameter is also removed from
the procedure’s type statement in the form
object’s interface section. Delphi will gen-
erate an “incompatible parameter” warning
at compile time, but this can be ignored.
In fact, removing unused Sender parame-
ters results in slightly leaner code.

Not only can Sender be omitted from any
procedure, but when used, it doesn’t even
have to be called Sender. This name is only
used by convention. The common term
makes understanding code simpler, but
there’s no reason not to name it Caller,
Origin, or Banana if the developer prefers.
So the Sender parameter doesn’t have to be
called Sender, and is, in fact, unnecessary. So
what is it? And why is it important enough
to add to practically every Delphi procedure?

Sender is a parameter passed from the compo-
nent that called the event handler, and is a
parameter of the type TObject. Because
TObject is the ancestor of all components,
Sender can accommodate any Delphi object
that can trigger an event. Sender forms a two-
way link between an object and an event han-
dler; it tells the procedure what object trig-
gered it to be called. In other words, if an
event handler was a letter, the Sender parame-
ter would be the return address.

Using Sender
The simplest way to use Sender is with an
if...then or case statement that performs a
certain action depending on what object trig-
gered the procedure. Here’s a typical example:

procedure Form1.ButtonClick(Sender: TObject);
begin

if Sender is StopButton
then Stop(Sender);

end;

This code examines the Sender parameter to see
if it’s the object, StopButton. If so, the event
handler calls another procedure, Stop, passing
the Sender parameter to that procedure. The
Stop procedure calls another procedure and so
on, passing the Sender parameter through the
program code. Because each procedure is sim-
ply passing along the parameter it received,
wherever the parameter is used, it will reflect
the object that called the original event handler.

Not only can Delphi developers use Sender to
identify the object that called a procedure, but
they can also use it to access that object’s
properties. The form in Figure 1 uses a num-
ber of colored panels as a palette. When the
user clicks on a panel, the large panel on the

Delphi at Work
left changes to the color of the
selected panel. This procedure does
not need the name of the panel
selected, only its Color property.
Therefore, each panel in the palette
can have its own color, but all share
the following OnClick event handler:

procedure
TForm1.Panel1Click(Sender:
TObject);
begin

Panel1.Color := TPanel(Sender).Color;
end;

Since Sender provides a “return address” to the calling object,
that object’s properties can be read and set as well. This way, the
procedure can also change the panel’s Color property without
actually working with the panel object’s name. For example:

TPanel(Sender).Color := clRed;

Any type of property can be accessed using this framework,
provided it’s a property belonging to the specified type. In the
previous example, the procedure specifies that Sender is a
TPanel, which therefore has a Color property. While Sender is
declared as a TObject in the procedure header, the following
line would return a compiler error:

TPanel1.Color := TObject(Sender).Color;

As TPanel’s ancestor type, TObject is perfectly valid in other
respects; but it does not contain a Color property. Since
TObject contains no properties, developers cannot use it to
determine the properties of a wide range of objects. Thus, a
program can’t find the color of a TPanel, TLabel, or TForm
all with the same TObject(Sender).Color code.

In fact, these three component types all contain the Color
property. However, because they do not share this property in
common ancestor classes, programmers cannot easily create
one block of code to get the Color property from these vari-
ous types of objects. The simplest solution a developer could
use would be this:

if Sender is TPanel then
Brush.Color := TPanel(Sender).Color;

if Sender is TLabel then
Brush.Color := TLabel(Sender).Color;

if Sender is TForm then
Brush.Color := TForm(Sender).Color;

Fortunately for developers, the Delphi designers added the Tag
property. Tag is a little catch-all integer parameter that devel-
opers can use for whatever purpose they choose. What makes
Tag especially useful is that it resides well up the inheritance
tree in the TComponent class. Just two steps down the ladder
from TObject, TComponent is the ancestor of all controls. This
means that any of these objects will have the Tag property.
Unlike the Color property cited earlier, the Tag property of any
object can be accessed with a simple line of code:
TForm.Tag := TComponent(Sender).Tag;

Figure 1: This mini-
program sets the color
of the panel at right to
the color of the panel
selected by the user.
36 October 1996 Delphi Informant
Sender Impostors
As procedures pass the Sender parameter from one to another,
it never changes. It always points back to the object that called
the original event handler. This is true provided each proce-
dure along the path passes the original parameter. However,
you can also substitute another parameter for the original
Sender, fooling subsequent procedures into acting on another
object as if it were the true Sender.

This is the basis of our sample application, SENDER.DPR.
It uses Sender and Tag so that Delphi can be “fooled” into
having similar menu and button commands perform spe-
cial actions on the buttons. Traditionally, this wouldn’t
require special Sender parameters — both buttons and
menu items will share an event handler that can update the
button as part of its functionality:

procedure Button1Click(Sender: TObject);
begin

{ Main functionality }
Button1.Font.Style := [fsBold];

end;

However, when several components share a single event han-
dler, the programmer cannot simply assume to act on a spe-
cific object. Modifying the code in question to read:

TButton(Sender).Font.Style := [fsBold];

is fine if the code is always called by a TButton. However,
this makes it troublesome to call the same event handler
from a corresponding menu item because the menu item
causes an error each time it calls the event handler.

The Sample Application’s Framework
The sample application provides the framework for a modu-
lar, easily-extendible application. It also demonstrates how to
make the simple Sender parameter do a lot of high-powered
work, and shows how to get around some of the limitations
mentioned earlier.

Most applications contain menu items and buttons that
perform the same action. Delphi makes it simple to do
this by routing multiple events to a shared event handler.
If multiple buttons and menu items all use the same event
handler, it’s simple to determine which control called the
procedure. However, it becomes more difficult to deter-
mine, say, which menu item corresponds to the calling
event if the control was actually a button. The user may
obviously find that the Word Wrap button and the Word

Wrap menu command are synonymous in functionality.
However, to have Delphi understand this and update the
menu item’s Checked property — regardless of which con-
trol was the Sender — takes some special programming.

The sample application contains four SpeedButtons, as well as
main and pop-up menu items that correspond to each (see
Figure 2). The buttons and menu items perform similar func-
tions, in this case, using a database to track the time spent on

Delphi at Work

Figure 3: Setting the values of properties for the sample appli-
cation’s SpeedButton and MenuItem components.

MenuItems
Name/Caption Tag OnClick event handler

File1 0 --
MainItem1 1 SpeedButtonClick
MainItem2 2 SpeedButtonClick

MainItem3 3 SpeedButtonClick

MainItem4 4 SpeedButtonClick

PopupItem1 1 SpeedButtonClick

PopupItem2 2 SpeedButtonClick

PopupItem3 3 SpeedButtonClick

PopupItem4 4 SpeedButtonClick

SpeedButtons
Name/Caption AllowAllUP GroupIndex Tag OnClick event handler

SpeedButton1 True 1 1 SpeedButtonClick
SpeedButton2 True 1 2 SpeedButtonClick
SpeedButton3 True 1 3 SpeedButtonClick
SpeedButton4 True 1 4 SpeedButtonClick

Figure 4: Referencing PushButton and ReleaseButton with the
SpeedButtonClick procedure.

procedure TForm1.SpeedButtonClick(Sender: TObject);
var

A : Integer;
begin

if Sender is TSpeedButton then
if TSpeedButton(Sender).Down then

PushButton(Sender)
else

ReleaseButton(Sender)
else

for A := 0 to ComponentCount-1 do
if Components[A] is TSpeedButton then

with Components[A] as TSpeedButton do
if Tag = TComponent(Sender).Tag then

begin
Down := not Down;
if Down then

PushButton(Self.Components[A])
else

ReleaseButton(Self.Components[A]);
end;

end;
each of a number of tasks. Program users
can configure any number of tasks, all of
which call the same event handler. (For
clarity, the sample application illustrates
only the Sender functions.)

While a task is active, its SpeedButton
remains depressed. Pressing a depressed
button releases it and ends the task.
Pressing a button while another is
depressed releases the first and depresses the new button, causing
the timesheet database to be simultaneously updated. The trick
is to handle a number of MenuItems and SpeedButtons with
one event handler. This technique enables you to allow for any
number of tasks without writing a new handler for each.

Implementing this functionality requires one more ingredient:
the Components property. Like Tag, Components is a property
of TComponent, meaning that it’s accessible to all components.
Components is a property of every component, but in most
cases it’s only used on TForms. In this case, the Components
property is an array of all components owned by the form.

Build It
To build the sample application, create a single form named
Form1. Add four SpeedButtons (used here to easily allow
two-state buttons), a Label, a MainMenu (with an item called
File1 and four sub-items), and a pop-up menu (also with four
menu items). Set the properties as shown in Figure 3. Note
that all the buttons and menu items have the same event han-
dler, namely SpeedButtonClick (see Figure 4). This procedure
is called from any of the SpeedButtons or menu items on the
form (except MenuItem File1). It references two external pro-
cedures, PushButton and ReleaseButton.

SpeedButtonClick first determines which object sent the event.
If it’s a TSpeedButton, it passes that object to the PushButton
or ReleaseButton procedure, depending on the button’s state
(up or down). These procedures allow convenient spots for
messages to be handled. In the following example, the
Caption of Label1 is set to report the event that occurred:

procedure TForm1.PushButton(Sender: TObject);
begin

Label1.Caption :=
TComponent(Sender).Name + ' was clicked.';

end;

procedure TForm1.ReleaseButton(Sender: TObject);
begin

Label1.Caption :=
TComponent(Sender).Name + ' was released.';

end;

If the Sender of the event is not one of the buttons, we
must determine which button to click. This is where the
Tag property and the Components array property come in.
As you noticed in Figure 3, SpeedButton1 had a Tag value
of 1. MainItem1 and PopupItem1 also have Tag values of 1.
Therefore, if any of the menu items are selected, it’s a sim-
ple matter of viewing their Tag values and transferring the

Figure 2: The lay-
out of the sample
application’s com-
ponents.
37 October 1996 Delphi Informant
event to the SpeedButton with the same Tag. This is han-
dled in the SpeedButtonClick handler:

for A := 0 to ComponentCount-1 do
if Components[A] is TSpeedButton then

with Components[A] as TSpeedButton do
if Tag = TComponent(Sender).Tag then

This code snippet scans the Components array and examines
each component it finds. When a TSpeedButton is found, the
code compares this object’s Tag value with the Tag value of
the object that originally fired the message. If the values are
the same, then the code found the button that ultimately
receives the event. Since the code has already determined
that it’s a TSpeedButton, this object’s up/down state can now
be toggled. Then, either the PushButton or ReleaseButton
procedure is called with the selected SpeedButton passed as
the parameter as follows:

Douglas Horn is a free-lance writer and Contributing Editor to Delphi Informant. He
can be reached via e-mail at horn@halcyon.com. Readers may browse a collection
of his past articles at his Web site, http://www.halcyon.com/horn/default.htm.

Delphi at Work
begin
Down := not Down;
if Down then

PushButton(Self.Components[A])
else

ReleaseButton(Self.Components[A]);
end;

This statement:

PushButton(Self.Components[A])

calls the procedure PushButton, passing along the parameter:

Self.Components[A]

The PushButton procedure interprets this Self statement as
the original Sender. The Self portion is required because we
want to look at the Components property of Form1. Since
the code uses a with statement to simplify readability, we
must ensure that the code is viewing the correct Components
property. In this case, SpeedButtons also have a Components
property and without the Self qualifier, it will erroneously
look there instead.

The PushButton procedure is where the timesheet database
would be updated or other functions would be performed.
Since the previous procedure handled the bulk of the
work, PushButton simply performs the actions necessary
when the button has been pressed. Remember that
SpeedButtonClick did not send the actual Sender parameter,
38 October 1996 Delphi Informant
but sent a modified one that points to the SpeedButton
regardless of how the button was selected.
SpeedButtonClick’s other procedure call, ReleaseButton, is
likewise called to handle whatever events should occur
when the button is released.

Conclusion
Alone, the Sender parameter is a simple return address,
allowing functions to trace which component triggered
their event. But used in conjunction with a few other
properties, such as Tag and Components, Sender becomes a
powerful tool for tracing and filtering program flow. This
ability to work around program limitations allows devel-
opers to create single, modular event handlers for compo-
nents of all types, without the need for multiple if..then
statements. This, of course, is just one way of extending
Sender’s abilities. There are as many possibilities as there
are programs to write. ∆

The demonstration program referenced in this article is available
on the Delphi Informant Works CD located in
INFORM\96\OCT\DI9610DH.

39 October 1996 Delphi Informant

The INISource Component
Creating INI-Aware Controls

Inside OP
Delphi / Object Pascal

By Dan Miser

Figu
comp
Delphi’s ability to interact with databases is second to none. However, there
is a related feature that is not supplied in Delphi — the ability to interact

seamlessly with .INI files. .INI files are a convenient way for a program to store
user configuration settings that can affect almost any aspect of a program.
Delphi made access to the .INI file easy by
wrapping almost all existing functionality of
.INI files from the Windows API into an
object named TINIFile. However, this still
leaves a great deal of manual coding. The pro-
grammer must read each item from the .INI
file and set the corresponding control with that
value. When the user is done editing these
controls, the programmer needs to save the
value of each control back into the .INI file.

The entire process is very similar to the way
Delphi’s data-aware controls interface with
databases. In that model, the DataSource and
DataField properties of the data-aware con-
trol determine the value of the data-aware
control. The programmer never needs to
worry about reading data from, or writing
data to, the database table again. By creating
a set of .INI-aware controls to mimic the
behavior of the data-aware controls, the pro-
grammer will be freed from the mundane
task of reading and writing individual .INI
file entries throughout the application.
re 1: A DataSource, Table, and four DBEdit
onents.
Determining the Approach
The first step in deciding how to create the
.INI-aware controls is to consider how
Delphi’s data-aware controls work. During
Delphi’s development, Borland adopted a
standard in which each data-aware control
is created as a descendant of its non-data-
aware ancestor, and any database access
needed would be added in every data-
aware control. For example, the standard
data-aware edit control, TDBEdit,
descends from TCustomMaskEdit. It also
has its own data-handling methods that
interact with the database and various
properties of the control. Therefore, the
.INI-aware controls should also descend
from their non-data-aware ancestors, and
add methods to interact with the .INI file
and control.

An example best reveals the integration of
Delphi’s data-aware controls. Figure 1 shows
a DataSource, Table, and four DBEdit com-
ponents. Note that the TableName property
is assigned in only one place, the Table com-
ponent. The DataSource component
becomes linked to that Table via the DataSet
property. This interaction allows the data-
aware controls to reference a database table
by assigning the appropriate DataSource
component in their DataSource property.

This mechanism is used so data-aware con-
trols can refer to either a Table or Query
component. Since we only need to read and
write from one type of data source (the .INI
file), we can have the TINISource component
contain the file name.

Inside OP

Figure 2: The TINIEdit.Notification method.

procedure TIniEdit.Notification(AComponent: TComponent;
Operation: TOperation);

begin
inherited Notification(AComponent, Operation);
if (Operation = opRemove) and (FIniLink <> nil) and

(AComponent = IniSource) then
IniSource := nil;

end;

procedure TIniKeywordProperty.GetValueList(List: TStrings);
var

Instance : TComponent; IniSourceInfo : PPropInfo;
SectionInfo : PPropInfo; IniSource : TIniSource;
Section : string;

begin
Instance := GetComponent(0);
IniSourceInfo :=

TypInfo.GetPropInfo(Instance.ClassInfo,'IniSource');
if (IniSourceInfo <> nil) and

(IniSourceInfo^.PropType^.Kind = tkClass) then
begin

IniSource :=
TObject(GetOrdProp(Instance,IniSourceInfo))

as TIniSource;
SectionInfo :=

TypInfo.GetPropInfo(Instance.ClassInfo,'IniSection');
Section := GetStrProp(Instance, SectionInfo);
if (IniSource <> nil) and (SectionInfo <> nil) and

(Section <> '') then
IniSource.IniFile.ReadSection(Section,List);

end;
end;

Figure 3: The TINIKeywordProperty property editor.
The INISource Component
The INISource component is the master controller of all
.INI-aware controls. It will be used to associate the .INI file
and .INI-aware controls. When the programmer assigns an
.INI file name to the FileName property, a TINIFile object is
created. There is an interesting side-effect of this creation:
not only will the TINIFile open an existing .INI file, but if
the file does not exist, it will create the file automatically.
Therefore, the programmer does not need to do anything dif-
ferent if this is the first time the user has run the program, or
if they have already saved settings from a previous run.

The INISource component will also serve as a centralized
read/write mechanism for the .INI-aware controls. Using
Borland’s TTable object as a model, the Post and Cancel meth-
ods will be used to allow the programmer to easily save and
restore all the .INI-aware controls that have been registered
with a specific INISource component.

Once the INISource component is in place and an .INI file
has been chosen, the .INI-aware controls need a way to refer to
that existing component. This is easily accomplished in Delphi
by specifying a property of type TINISource in the published
section of the component. Delphi will search the form for all
components of type TINISource and place them in the list of
the Object Inspector automatically.

Of course, no component that references another compo-
nent is complete without a Notification method. This
method is called every time a component is inserted into or
deleted from a form. Thus, the programmer can take special
action if the component that is about to be deleted is refer-
enced in the current component. This method is also neces-
sary to ensure the INISource property references a valid
INISource component at all times, thereby avoiding a nasty
GPF. Figure 2 shows the TINIEdit.Notification method.

Each .INI-aware control will have several properties that will
describe the appropriate .INI file entry for that control. For
example, once the INISource component is set for a TINIEdit,
the INISection property will have a list of currently defined sec-
tion names for the .INI file that the INISource component has
defined. Lastly, the INIDefault property can be set to a value
appropriate for its type, in case the user has not yet saved any
values to the .INI file.

Into the INI
Displaying existing Section and Keyword names of an .INI file
will be handled by writing property editors to show all the pos-
sibilities available to the programmer at any time. This is partic-
ularly helpful to complete the total concept of visual program-
ming. By providing this functionality, the programmer does not
need to remember each and every section name for a given .INI
file, or every keyword that exists inside the section that was just
selected.

Another benefit of this visual programming metaphor is the
elimination of typing errors by allowing the programmer to
40 October 1996 Delphi Informant
select from a list of valid possibilities. Of course, the user can
always type in a value that does not exist to create a new sec-
tion or keyword.

The property editors rely on a great deal of run-time type
information (RTTI) in order to communicate directly with
other components on the form. An example of this com-
munication can be found in the TINIKeywordProperty
property editor (see Figure 3). This method needs to set
the list of possible keywords that exist in an .INI file. The
call to GetComponent retrieves the component that trig-
gered this property editor. This is necessary to identify the
component throughout the rest of the method. After the
component has been identified, its other properties can
also be accessed in the same fashion. (The VCL source
code has several property editors that are excellent learning
aides. For more information, see the file
\DELPHI\LIB\DBREG.PAS.)

When the programmer specifies an .INI file name for the
INISource component, all section names of that .INI file need
to be identified. Any lines that are enclosed in brackets can be
identified as section names, and therefore need to be inserted
into an awaiting TStringList variable called SectionNameList.

Since both the Section and Keyword properties are nothing
more than a list of possible entries, the paValueList is the cor-
rect value to assign in the GetAttributes method. To assign the

Figure 4: TINIEdit routines.

procedure TIniEdit.WriteFile(Sender : TObject);
begin

if (IniSource <> nil) and (IniSource.Active) and
(FIniSection <> '') and (FIniKeyword <> '') then

IniSource.IniFile.WriteString(
FIniSection, FIniKeyword, Text)

end;
...
procedure TIniEdit.ReadFile(Sender : TObject);
begin

if (IniSource <> nil) and (IniSource.Active) and
(FIniSection <> '') and (FIniKeyword <> '') then

Text := IniSource.IniFile.ReadString(
FIniSection, FIniKeyword, FIniDefault)

else
Text := Name;

end;
...
constructor TIniEdit.Create(AOwner : TComponent);
begin

inherited Create(AOwner);
FIniLink := TIniLink.Create;
FIniLink.Control := Self;
FIniLink.OnReadFile := ReadFile;
FIniLink.OnWriteFile := WriteFile;

end;

Inside OP

Figure 5: The Active procedure calls NotifyLinks, which in turn
calls the ReadFile method of the .INI-aware controls.

procedure TIniSource.NotifyIniLinks(Event : TIniEvent);
var

i : Integer;
begin

for i := 0 to FIniLinks.Count-1 do
TIniLink(FIniLinks[i]).IniEvent(Event);

end;

Dan Miser is a contract programmer who has been writing Windows database
programs since 1991. He is also a Borland Certified Delphi Client/Server
Developer. You can contact him at 73044.2432@compuserve.com.
list of possible values, the method GetValues will be called. It
is here that the abstract method GetValueList needs to assign
the appropriate items to the list.

Reading and Writing
The work of reading and writing the .INI file is left to the
non-visual component, TINILink. This component acts as
intermediary between the TINISource component and the
.INI-aware control to which it belongs. Setting up the
TINILink to communicate properly requires two steps: creat-
ing the TINILink in the .INI-aware control, and adding the
newly created TINILink component to the list of INILinks
contained in the appropriate TINISource component.

In addition to these prerequisites, each .INI-aware control is
also responsible for providing methods to read from, and
write to, the .INI file. By assigning these methods to the
event-handlers of the TINILink component, each .INI-aware
control is able to respond as it should when a request to read
or write the .INI file occurs (see Figure 4).

All this setup is necessary to allow the INISource component
to communicate back to all of the links that have registered
with it. For example, when the user first set the
INISource.Active property to True, the INISource component
needs to notify all .INI-aware controls that they can read the
.INI file and display the appropriate value. This architecture
will also allow design-time viewing of the data as it exists at
that moment (see Figure 5).
41 October 1996 Delphi Informant
Conclusion
Now that the components
are built, it’s time to see
them in action. The sample
program provided will allow
the user to modify certain
settings in his or her
WIN.INI file. There is a
button on the form to save
the user’s changes to the
.INI file, as well as a button to revert all the changes to the
current .INI file’s state. A complete .INI file editor in two
lines of code! Notice the effect of setting the
INISource.Active property both at design time and run time
(see Figure 6).

The reader is left with many different opportunities to
extend the scope of these components. Some examples
would be:

Add other non-basic components to behave in a similar
fashion (e.g. Orpheus controls).
Allow access to the registration files of Delphi 2.
Allow different properties to be saved to the .INI file.

Visual programming and component-based design are the
new paradigms in programming, and Delphi supports those
models superbly. The beauty of Delphi’s extensibility is evi-
dent when even a small feature can be automated, allowing
the programmer to focus on more difficult problems. The
components developed here relieve the programmer from the
tedium of ever dealing with .INI files again. ∆

Figure 6: The example program
in action.

42 October 1996 Delphi Informant

New & Used

By James Callan

With Class 3.0
MicroGOLD Software Develops OOA & OOD Tool

Figure 1: A clas
With Class.
I f you are familiar with Object-Oriented Analysis (OOA) and Object-Oriented
Design (OOD), but don’t want to spend a fortune for CASE support, then

With Class 3.0 from MicroGOLD Software, Inc. is worth a look. With Class is
the affordable CASE tool many developers have been waiting for, supporting
Delphi 1 and 2. It lacks the polish of a US$1,200 CASE tool, but at one-fourth
the price (US$295), you might be willing to forego some sheen.
Restraining RADicals
According to industry accolades and product
awards, most developers agree Delphi is
leading in Rapid Application Development
(RAD). Unfortunately, prototype systems
developed with RAD are frequently
deployed as production systems, lacking the
endurance and elegance found in their well-
engineered counterparts. The difference is
proper analysis and design.

When designing larger applications, pro-
grammers must comply with some unifying
methodology. Formal OOA and OOD
methodologies enable programmers and ana-
lysts to visualize object-oriented systems by
providing graphical notations for capturing
the relationships between classes and the
s diagram produced from Delphi code using
dynamic interactions between run-time
objects. Properly employed, OOA and OOD
techniques help refine these RADicals into
well-engineered production applications.

Although many academicians and consultants
have proposed different graphical notations on
requirement analysis, the notations proposed by
Rumbaugh, Coad-Yourdon, Booch, and Shlaer-
Mellor are generally used. There are exceptions
(e.g. Jacobson’s method in the Telecom indus-
try), but not many. Developers and companies
often standardize on their favorites. I prefer the
Booch method, yet many CASE tool authors
find the Booch blobs difficult to automate.
Every method requires the drawing of diagrams
to visualize, communicate, and document
designs. Just as the pencil begot the eraser, these
methodologies have spawned CASE tools.

Casing CASE Tools
Accelerating the drawing process is the first
step in automating a methodology. Typically,
graphical drawing tools such as Visio quickly
capture the graphical diagrams. Soon designers
will want to capture the semantics between
class and object relationships, and diagrams
augmented by detailed attribute (property) and
class definitions. Ultimately, the goal is to doc-
ument a system’s requirements, including all
the decisions made until deployment. These
are worthy goals, and CASE tools can help.

Although they serve many additional pur-
poses, these CASE packages are essentially
smart drawing tools; capturing designs for

Figure 3 (Top): A customized class diagram with color added.
Figure 4 (Bottom): The CLASS dialog box.

Figure 2: A Booch methodology class diagram.

New & Used
communication and documentation are their primary use.
All CASE tools permit users to drag and drop graphical
shapes, connect the shapes with lines, and adorn the lines
with special symbols. CASE tools also provide dialog boxes
for recording semantic and design information about class-
es, objects, properties, methods, events, exceptions, and
such. After accepting the information, the tools assist in
analyzing designs for completeness, consistency, and integri-
ty. With most of the tools, both the diagrams and semantic
information can be printed and distributed to team mem-
bers. Some tools even support design versioning.
Additionally, many tools generate class definitions, include
files (used in C++), and complete source code from the infor-
mation captured in their CASE repositories. Some tools help
perform what-if impact analysis on the labor and costs
required for system changes. Since most CASE tool buyers
are existing developers who have outgrown one-person pro-
jects, many tools reverse-engineer existing code. Reverse engi-
neering automatically creates diagrams and specifications
from existing source code or database tables. “Marketeers”
often bill such products as “full-cycle” CASE tools.

With Class
Recently, MicroGOLD released version 3.0 of their With Class
product to the Delphi community. Since many developers have
been waiting for an affordable CASE tool that supports both
versions of Delphi, we arranged a test drive.

With Class includes a 100-page user manual, two diskettes,
and an online tutorial and code generation primary. For an
additional US$35, a larger printed tutorial is available. (I rec-
ommend the larger tutorial to learn all the features.)

With Class creates class, state, and object interaction diagrams
that use Rumbaugh, Coad-Yourdon, Booch, and Shlaer-Mellor
notations. It collects information on system, class, attribute
(property), operation (method), state, transition, and object
interactions. With Class generates source and SQL code, CASE
reports from the With Class repository (forward engineering),
and renders class diagrams from existing source code (reverse
engineering). Through its scripting mechanism, With Class also
enables the crafting of custom reports and code generators.
43 October 1996 Delphi Informant
(With Class includes scripts to support C++, Eiffel, Ada, Object
Pascal, Smalltalk, Visual Basic, SQL, and Java.)

The Five-Minute Miracle
My initial five-minute test was simple: install With Class,
point it at existing Delphi code, and run it. No studying
manuals, no perusing online Help, and no peeking at the Tip
of the Day. I wanted to test the reverse engineering as a
beginner, so I took a quick dive in.

With Class passed my five-minute smoke test with flying
colors. From my Delphi code, it produced an accurate class
diagram without a single problem. After a minute of drag-
ging things around, I had the diagram shown in Figure 1.

Since OOD methodologies are largely equivalent, With
Class switches between them easily. After selecting the
Booch methodology from With Class’ main menu, a class
diagram was produced in the Booch blobs (see Figure 2).

Other With Class options help you customize class diagrams and
add color (see Figure 3). Double-clicking the TESPSymbol class
displays the CLASS dialog box (Figure 4). Add another menu
click, and With Class regenerates a class definition for
TESPSymbol. A closer look at the generated source code revealed

Figure 5: Source code generated

New & Used
that With Class had gener-
ated the formal Get and Set
methods that aren’t in the
original (see Figure 5). You
can also customize the cod-
ing style. With Class’ Code
Generation dialog box
allows you to change lan-
guages and port applica-
tions (e.g. from Visual Basic
to Delphi). For example,
prototype applications in
Delphi will use the reverse
engineering facility to gen-
erate Java code.
Figure 6: The simple state-transition diagram.

Figure 8: An interaction diagram that illustrates a general
menu option dispatcher.

Figure 7: The Transition Specification dialog box that displays
when you double-click a transition line.
Modeling Dynamics
After you’ve mastered modeling static class diagrams, it’s time
to model system dynamics. In OOD, this means state-transi-
tion diagrams and object interaction diagrams, and With
Class supports both. Figure 6 displays a simple state-transi-
tion diagram of the sales with the State Specification dialog
box. Figure 7 shows the Transition Specification dialog box
that displays when you double- click a transition line.

Object interaction diagrams display the message passing
(method invocation) that occurs dynamically between
objects. The interaction diagram in Figure 8 illustrates a
general menu option dispatcher executing the change color
use case.

Open Architecture
A CASE tool’s value increases proportionally to its usefulness for
your project. Different projects and teams require varying
degrees of design documentation; one size never fits all.
Realizing this, MicroGOLD created a CASE framework to sup-
port popular methodologies, and opened its architecture.
MicroGOLD achieved this in two ways:

MicroGOLD created an OLE server. Using With Class’
OLE services, you can embed With Class CASE diagrams in
compound documents. With Class supports OLE2 in place
activation of CASE diagrams embedded in other documents.
With Class creates a parameter for each item that users
enter, and uses them in a simple text-replacement merge
tool to generate reports and code. Parametric programming
is the general term for this technique. As shown in Figure 9,
With Class calls its rendition Scripting.

By creating custom scripts, With Class collects design informa-
tion, and through custom scripts, formats the information as
you like. You can also export CASE information via scripts to
word processors, databases, spreadsheets, or custom applications
and tools.

Horrors in Heaven
With Class has an impressive array of basic CASE features,
but the tool is not without flaws. Beginners beware. With
Class’ documentation is written in an academic style that isn’t

by With Class.
44 October 1996 Delphi Informant
well-adapted for Delphi (With Class was originally written for
C++ environments). You’ll find the publication standards are
below other similarly-priced software packages. However, a
more extensive tutorial that most developers will find helpful
can be purchased to straighten the learning curve. The good
news is that the manuals are being redone. In the meantime,

ingly well-documented and carefully-engineered object-
oriented applications. ∆

Figure 9 (Bottom): A diagram mapping Parametric programming.

New & Used

James Callan, an 18-year computing veteran and former consulting director for
Oracle Corp., is currently president of Gordian Solutions, Inc., an information tech-
nology consulting provider in Cary, NC. A frequent writer and speaker on informa-
tion technology and client/server computing, James specializes in product design.
prepare to labor to become acclimated with these CASE tools.
You may also notice additional irritations in With Class.
First, the drawing engine does not double buffer, so you
get the pixellation effect as the images constantly redraw.
It’s fast, but you may go blind on a large project. This
method of drawing causes occasional ghost images to
appear, especially in Booch diagrams. Also, the multi-select
feature might make you scream. It is used to cut and paste
common design elements, and move designs on the canvas.
It is neither intuitive, nor easy to use. Reworks to the user
interface are also expected in future versions.
45 October 1996 Delphi Informant
When generating code in With Class,
be aware that its parse engine doesn’t
perform a merge generation. It either
generates new files or overwrites exist-
ing files. Everything must be in the
CASE tool and scripts. If not, you
must create additional scripts and run
a second pass to merge in any code
that was manually added.

Conclusion
For US$295 (the 16-bit version
retails for US$195) With Class ships
with some surprising features, but
the tool has flaws. Without better
documentation, plan to spend a
week or two being unproductive. To
perform real work, you must antici-
pate and overlook With Class’ user
interface quirks. If you can ignore the irritations and learn
With Class’ scripting language, you’ll produce some amaz-

For its price, With Class
ships with some surpris-
ing features, and is
capable of producing
well-documented and
carefully-engineered
object-oriented applica-
tions. However, the doc-
umentation is poor, and
the interface is quirky.

MicroGold Software, Inc.
76 Linda Lane,
Edison, NJ 08820
Phone: (908) 668-4779
Fax: (908) 668-4386
E-mail: 71543.1172@-
compuserve.com
Web Site:
http://www.microgold.com
Price: With Class 3.0 Professional,
US$295; With Class 3.0 Enterprise,
US$395.
He can be reached at (919) 460-0555, or 102533.2247@compuserve.com.

TextFile
Delphi 2 Unleashed Aimed at Advanced Developers
“The New Delphi 2
Programming EXplorer”
continued on page 47

“Delphi 2 Unleashed Aimed at
Advanced Developers”

continued on page 47
It is not uncommon for a
book published on one ver-
sion of software to be updat-
ed and reprinted for a subse-
quent version of that soft-
ware. Unless you take a look,
you’ll probably assume Delphi
2 Unleashed by Charles
Calvert [SAMS Publishing,
1996] is merely an updated
version of Delphi Unleashed
[SAMS Publishing, 1995].
Upon inspection, however,
you’ll discover Delphi 2
Unleashed shares little with its
highly successful predecessor.

Make no mistake, Delphi 2
Unleashed is a major new
book on Delphi 2. But be
forewarned, this book won’t
be much help if you’re only
working in Delphi 1. If
you’re not using Delphi 2,
you’ll be better served with a
book that exclusively covers
Delphi 1, or even one that
covers both products.

If you want to learn about
Delphi 2, however, this
book requires serious con-
sideration. The fundamen-
tal reason is its extensive
coverage of the Win32
API. If you’re primarily a
Windows 3.x developer,
this material will give you a
detailed, in-depth look at
this powerful new environ-
ment. While you could
consider a book strictly on
Windows 95 or Windows
NT programming, Delphi
2 Unleashed excels because
it discusses these topics
with respect to Delphi 2.
And Charles Calvert is in a
46 October 1996 Delphi Informant
good position to discuss
these issues. In addition to
being the author of Delphi
Unleashed, he is the author
of Teach Yourself Windows
95 Programming in 21 Days
[SAMS Publishing, 1995].

But the Win32 API coverage
is just the beginning. This
book also includes detailed
discussions of the new
Delphi 2 features, as well as
a large section on game and
Internet development.
Other sections include dis-
cussions about Delphi’s data
types, creating and using
databases, Delphi’s object
model, as well as OLE
Automation and the
Component Object Model.

In addition, Delphi 2
Unleashed ships with a CD
loaded with code examples,
demoware, shareware, and
freeware. The CD also con-
tains Microsoft Word for
Windows .DOC files of the
text of 15 chapters dropped
from the original edition.
However, these chapters are
formatted for typesetting,
and aren’t nearly as easy to
read as printed material.
Consequently, if you are a
Delphi 1 developer, you
should get a copy of Delphi
Unleashed.
The New Delphi 2 Programming EXplorer

The New Delphi 2
Programming EXplorer by Jeff
Duntemann, Jim Mischel,
and Don Taylor [Coriolis
Group Books, 1996] is a
revised and expanded edition
of Delphi Programming
EXplorer [Coriolis Group
Books, 1995]. The first edi-
tion was an excellent intro-
duction to Delphi program-
ming. In this edition, the
authors have added 200
pages, covering SQL data-
base programming, custom
Delphi components,
Windows messages, and
Delphi exception handling.
They have done a good job,
and the book adheres to the
standards of the first edition.

I reviewed the original edi-
tion twice in Delphi
Informant: in August 1995
upon its initial release, and
October 1995 when it
shipped with a CD-ROM of
Delphi-related material. In
those reviews, I stated the
authors had done a great job
introducing Delphi to begin-
ning programmers. The
book was divided into three
sections: the basic mechanics
of using Delphi; object-ori-
ented Windows program-
ming with Delphi; and data-
base application develop-
ment with Delphi. The final
section was presented in an
atypical, yet refreshing man-
ner: Taylor cast it as a detec-
tive story starring Ace
Breakpoint, a hard-boiled
private eye struggling to turn
into a sensitive, new-age
software consultant. This was
a great way to cover a lot of
ground quickly, in a manner
that kept readers engaged.

The authors retained this
successful formula in the sec-
ond edition. The first three
quarters of the book are
essentially unaltered,
although the authors added
small sections describing fea-
tures of Delphi 2 that differ
significantly from Delphi 1.
They also re-shot the screen
captures to show the new
look of Delphi 2 running
under Windows 95, and cor-
rected minor errors in the
text and program listings.

TextFile
Delphi 2 Unleashed Aimed at Advanced Developers (cont.)
Delphi 2 Unleashed is aimed
strictly at advanced develop-
ers because of its detailed
discussions of many high-
end topics. By comparison,
Delphi Unleashed was an
excellent book for begin-
ning/intermediate Delphi
developers, while still con-
taining enough detail to sat-
isfy advanced developers.

I must admit, as much as I
like this book, there are sev-
eral aspects I don’t care for.
The first is its size. The origi-
nal edition, as well as several
of its competitors, were big
books. But they were noth-
47 October 1996 Delphi Informant
ing compared to Delphi 2
Unleashed. This book is huge
and, I think, unwieldy. I
simply cannot take this book
on the road. At over five
pounds, and a thickness
exceeding two inches, it
seems more like a weapon
than reading material.

This book is also expensive.
While you can easily get it for
less than its US$59.99 cover
price, it remains the most
expensive mass-market com-
puter book I’ve seen. Why
isn’t this two books? Let’s get
real. How many readers want
to lug around a 1,400-page
book when they’re interested
in only a few of the topics?

Finally, there is the writing
style. If you enjoyed Calvert’s
chatty, conversational style in
Delphi Unleashed, you won’t
be let down here. Some read-
ers, however, will find this
casual style of writing dis-
tracting and, given the size of
this book, unnecessary.

But don’t misunderstand me.
Delphi 2 Unleashed makes an
outstanding addition to the
library of Delphi 2 develop-
ers, particularly those rela-
tively new to the Win32
API. Although this book is
big and expensive, it deserves
your serious consideration.
And don’t be fooled by the
title — this book may be for
you, even if you own the ear-
lier edition.

— Cary Jensen, Ph.D.

Delphi 2 Unleashed
by Charles Calvert, SAMS
Publishing, 201 West 103rd
Street, Indianapolis, IN
46290, (800) 428-5331.

ISBN: 0-672-30858-4
Price: US$59.99
(1,400 pages, CD-ROM)
The New Delphi 2 Programming EXplorer (cont.)

The new material starts in
Part 3 (Chapter 15), where
Mischel introduces SQL
database programming con-
cepts. In two well-written
chapters, Mischel and
Duntemann cover the
basics of using SQL and
Delphi. The first demon-
strates managing data using
SQL, the Borland Database
Engine, and the TQuery,
TDBGrid, and TDataSource
components. For non-data-
base Delphi programmers,
this is a treasure-trove of
well-illustrated basic con-
cepts. The next chapter
treats SQL as a database
programming API, and
provides in-depth coverage
on how to use SQL with
Delphi. It covers enough
material to learn how to
create a real working SQL
database project. This sec-
tion also contains a tutorial
on creating custom Delphi
components by deriving
them from existing
component classes. Mischel
uses personal anecdotes to
keep the reader interested
in this moderately advanced
subject.
The fourth part of The New
Delphi 2 Programming
EXplorer contains the com-
plete text of Ace
Breakpoint’s Database
Adventure. This description
of the design and imple-
mentation of a complete
database package covers
eight chapters, and more
than 200 pages. It is also an
entertaining story; Ace is a
tough guy who experiences
some anxious moments as
he tries to win a consulting
contract — without losing
his girlfriend.

The original Ace
Breakpoint story was a
refreshing way to learn a
serious subject. I was
delighted to see Taylor
added two new Breakpoint
mini-adventures to this edi-
tion. I won’t reveal the out-
come between Ace and his
girlfriend, but I will say
that the new adventures
delve into some of the
more advanced areas of
Windows and Delphi. In
Chapter 27, Ace explores
the Windows messaging
system. He uses it to create
Delphi forms that are
“aware” of each other; they
can broadcast messages and
commands to each other.
While interesting, I think
this chapter needs a more
concrete example project; it
works, but is unrelated to a
practical application.

Chapter 28 does not suffer
from such problems. It
clearly shows how to work
with one of the most useful
parts of Delphi — the
exception mechanism for
handling errors. Using
exceptions, you can trap
any kind of error condi-
tion, from dividing by zero
to typing non-numeric
characters in the edit field
of a financial application.
However, because many
older languages weren’t
designed with error trap-
ping, it’s an unfamiliar con-
cept for many program-
mers. Adding error han-
dling in languages such as
C is messy and boring, so
developers often exclude it
from their program’s first
version. Or worse, they do
an incomplete job, and
their error handling fails.
It’s easy to not have good
error handling in such lan-
guages; but with Delphi,
it’s easy to build it in, and
this chapter demonstrates
how.

I used to recommend the
first edition of Duntemann,
Mischel, and Taylor’s book
to anybody looking to get
into Delphi programming.
I don’t do that anymore.
Now I recommend the sec-
ond edition. It’s a fine
upgrade to an already excel-
lent work.

— Tim Feldman

The New Delphi 2
Programming EXplorer
by Jeff Duntemann, Jim
Mischel, and Don Taylor,
Coriolis Group Books, 7339
E. Acoma Drive, Suite 7,
Scottsdale, AZ 85260,
(800) 410-0192 or
(602) 483-0192. Web Site:
http://www.coriolis.com.

ISBN: 1-883577-72-1
Price: US$44.99
(806 pages, CD-ROM)

File | New
Directions / Commentary

Borland’s Annual Harbinger
The annual Borland Developers Conference (BDC) tends to be a harbinger of the company’s stand-
ing each year. In 1994, a rather undisciplined keynote address by former CEO Phillipe Kahn typi-

fied the scatterbrained nature of the Borland of the early 1990s. 1995 was highlighted by a return to
respectability for the company, along with unbridled enthusiasm for the newly-released Delphi. This
year’s BDC, held in Anaheim in July, showcased Borland’s emerging technology in areas where the
software industry is rapidly moving — Internet/intranet and multi-tier architectures. To sum it up, I’ll
discuss four main impressions I have of BDC ’96.
Borland is well positioned for the
emerging Internet marketplace. Its
new Web-related products — Latté
and IntraBuilder — drew a great
deal of interest and enthusiasm at
the conference. If this duo ships
promptly, Borland can take a tech-
nological lead in the Internet tools
market. Additionally, Borland is
working closely with Sun and
Netscape on several Web technology
fronts. These relationships have pro-
duced tangible results for Borland,
such as Sun’s adoption of Borland’s
BAJA specification for the Java
Beans Initiative, as well as
Netscape’s licensing of the Just-In-
Time compiler for Navigator 3.0.
Ironically, while firmly entrenched
in the Sun/Netscape camp, Borland
may have more to gain if Microsoft
succeeds in the Web wars, due to
their Windows orientation with
Delphi, IntraBuilder, and other
products.

Delphi looks well poised to tackle
the next generation of applications.
After working with Delphi 2, my
immediate impression was “Where
could Borland possibly take this
product?” Besides minor enhance-
ments, how much more do you real-
ly need in a desktop development
environment? My horizons were
broadened when I heard where they
are taking the next version, called
Delphi 97. Extending beyond the
48 October 1996 Delphi Informant
desktop and two-tier client/server
models, Delphi 97 aims to bring
multi-tier application servers, COM
(the Component Object Model),
and Internet deployment into the
mainstream. You’ll learn more about
Delphi 97 next month, but suffice
to say that as application architec-
tures become more complex, Delphi
will look to encapsulate such tech-
nology into its environment.

The technology gap between soft-
ware vendors and customers appears
to be growing. By the nature of the
business, software vendors will
always be ahead of their customers
on the technology curve. This year,
the chasm between Borland,
Netscape, and Microsoft and their
customers seems larger than ever.
You have probably heard that an
Internet year is equal to three calen-
dar months because of the rapid pace
of technology innovation in that
market. While vendors race for the
leading edge, many customers are
still dealing with issues that are far
more mundane. For example, in one
session I led on migrating to Delphi
2, the majority of developers in the
audience were still building 16-bit
applications. Borland’s current
online survey of whether to develop
a new 16-bit version of Delphi is a
sign of the company’s realization that
the market is not moving as fast as
they’d like.
Delphi is maturing in the market-
place. The task of establishing itself
in a market ruled by Visual Basic
and PowerBuilder has been daunt-
ing, but Delphi is making definite
inroads. Not only was this the
largest BDC ever, of the 2,500 par-
ticipants, 75 percent of them
attended Delphi sessions. Another
sign of a product’s acceptance is
employment opportunities. While
newspapers continue to be dominat-
ed by PowerBuilder advertisements,
it was encouraging to see many
more Delphi job postings than at
BDC ’95, including a representative
of a Fortune 100 firm who intended
to hire several hundred Delphi
developers during the conference. ∆

— Richard Wagner

Visit the “File | New” home page at
http://www.acadians.com/filenew/-
filenew.htm. In addition to down-
loading past articles, you can get the
latest tips and information from the
world of software development.

Richard Wagner is Contributing Editor
to Delphi Informant and Chief
Technology Officer of Acadia Software
in the Boston, MA area. He welcomes
your comments at rwagner@-
acadians.com, or on the File | New
home page at http://www.acadians.-
com/filenew/filenew.htm.

	Table of Contents
	Delphi Tools
	NuMega Technologies Supports Delphi 2 with BoundsChecker 4.0
	Mercury Interactive and Borland Announce Client/Server Testing Solution
	SkyLine Tools Introduces ImageLib@theEdge for Delphi
	Eschalon Development Releases Power Libraries for Delphi 2
	Open Window Releases OWShare
	Objective Software Supports Delphi 2 with Product Updates
	Sax Ships Basic Engine Pro

	News Line
	EDS Chooses Delphi to Develop Case Tracking System
	Borland Ships Trial, Learning, and Low-Price Editions of Delphi
	Borland Presents Golden Gate Internet & Intranet Strategy
	VCL Contest Winners Announced
	Borland Announces Availability of its Latest Version of InterBase

	OLE Automation
	Using an Automation Server
	Declaring a Variant for Use with a Server
	Opening an Automation Server
	Controlling an Automation Server
	Releasing the Server
	Using an Automation Server Example
	Creating an Automation Server
	Adding a TAutoObject Unit
	Declaring Server Methods
	Declaring Server Properties
	Implementing Automation Methods
	Calling Your Automation Server
	Conclusion

	Classy DLLs
	Review of DLLs
	Delphi 1 vs. Delphi 2
	Exporting a Class
	The Interface Class
	How Exported Methods Work
	Memory Management
	Run-Time Type Information
	Version Control
	TInterface Class
	Conclusion

	Saved by an Expert
	Screen Saver Basics
	From the Command Line
	Forms: First Things First
	And the Password Is ...
	Capturing the Image
	Delphi Experts
	Loaded with Code
	Open the Project
	Generating the Screen Saver
	Conclusion

	Parentage and Ownership
	Show ...
	... and Tell
	Back to Controls and Components
	The Sample Program
	What Good Are They?
	Conclusion

	Versioning: The InterBase Advantage
	Locking Schemes
	Why You Should Care
	Transactions
	Transaction Isolation
	Versioning
	Advantages of Versioning
	Disadvantages of Versioning
	Recovery
	Other Issues
	Conclusion

	Return to Sender
	Sender Basics
	Using Sender
	Sender Impostors
	The Sample Application’s Framework
	Build It
	Conclusion

	The INISource Component
	Determining the Approach
	The INISource Component
	Into the INI
	Reading and Writing
	Conclusion

	With Class 3.0
	Restraining RADicals
	Casing CASE Tools
	With Class
	The Five-Minute Miracle
	Modeling Dynamics
	Open Architecture
	Horrors in Heaven
	Conclusion

	TextFile
	Delphi 2 Unleashed Aimed at Advanced Developers
	The New Delphi 2 Programming EXplorer

	Borland’s Annual Harbinger

